DOI QR코드

DOI QR Code

Containment Control for Second-order Multi-agent Systems with Input Saturations

입력 포화를 고려한 2차 다중 에이전트 시스템을 위한 봉쇄제어

  • Young-Hun, Lim (Department of Convergence Electronic Engineering, Gyeongsang National University)
  • Received : 2022.10.25
  • Accepted : 2022.11.25
  • Published : 2023.01.31

Abstract

In this paper, we study the containment control problem for second-order multi-agent systems, which consists of multiple leaders and followers. The goal is to drive the followers toward the convex hull spanned by the leaders. Thus, the swarm behavior can be obtained by controlling the entire group by the leaders. This paper considers the leaders move at a constant speed and the followers have input saturations. Moreover, we assume that the followers can exchange information with neighbors, and only relative state information is available. Under these assumptions, we propose the Proportional-Integral based distributed control algorithm to solve the containment control problem with moving leaders. Moreover, based on Lasalle's invariance principle, the conditions for the control gains that guarantee the convergence of the followers to the convex hull spanned by the leaders are investigated, and it was shown that it can be designed only using the system parameter. Finally, the simulations are conducted to validate the theoretical result.

본 논문에서는 다중 리더 에이전트와 추종 에이전트들로 구성된 2차 다중 에이전트 시스템의 봉쇄제어 문제를 연구하였다. 봉쇄제어의 목표는 추종 에이전트들을 다중 리더 에이전트들에 의해 생성되는 convex hulll을 추종하도록 하는 데에 있다. 따라서 리더 에이전트들에 의해 전체 그룹을 제어함으로써 다중 에이전트 시스템의 군집 행동을 얻을 수 있다. 본 논문에서 리더 에이전트들은 일정한 속도로 움직이고 추종 개체들은 입력 포화가 존재하는 경우를 고려하였다. 또한 추종 에이전트들은 이웃한 에이전트들과 상태 정보를 교환할 수 있고, 이웃과의 상대 상태 정보만 이용 가능하다 가정하였다. 이러한 가정하에 움직이는 리더 에이전트들을 고려한 봉쇄제어 문제를 해결하기 위해 비례-적분 기반의 분산제어 알고리즘을 제안하였다. 또한, 라살레 불변의 법칙을 기반으로 추종 에이전트들의 리더 에이전트들에 의해 생성되는 convex hull로 수렴을 보장하는 제어 이득들에 대한 조건들을 조사하였고 시스템 파라미터의 정보만으로 설계할 수 있음을 보였다. 마지막으로 모의실험을 통한 이론적 결과를 검증하였다.

Keywords

Acknowledgement

This work was partly supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.NRF2019R1C1C1009879) and by the MSIT(Ministry of Science and ICT), Korea, under the ICAN(ICT Challenge and Advanced Network of HRD) program(IITP-2022-RS-2022-00156409) supervised by the IITP(Institute of Information & Communications Technology Planning & Evaluation)

References

  1. A. Jadbabaie, J. Lin, and A. S. Morse, "Coordination of groups of mobile autonomous agents using nearest neighbor rules," IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988-1001, Jun. 2003. DOI: 10.1109/TAC.2003.812781.
  2. K. K. Oh, M. C. Park, and H. S. Ahn, "A survey of multiagent formation control," Automatica, vol. 53, pp. 424-440, Mar. 2015. DOI: 10.1016/j.automatica.2014.10.022.
  3. R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and Cooperation in Networked Multi-Agent Systems," in Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, Jan. 2007. DOI: 10.1109/JPROC.2006.887293.
  4. Y. Li and C. Tan, "A survey of the consensus for multi-agent systems," Systems Science & Control Engineering, vol. 7, no. 1, pp. 468-482, Nov. 2019. DOI: 10.1080/21642583.2019.1695689.
  5. J. Jiang and Y. Jiang, "Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies," Automatica, vol. 113, pp. 108804, Mar. 2020. DOI: 10.1016/j.automatica.2020.108804.
  6. B. Ning, Q. L. Han, and Q. Lu, "Fixed-Time Leader-Following Consensus for Multiple Wheeled Mobile Robots," IEEE Transactions on Cybernetics, vol. 50, no. 10, pp. 4381-4392, Oct. 2020, DOI: 10.1109/TCYB.2019.2955543.
  7. Y. Cao, W. Ren, and M. Egerstedt, "Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks," Automatica, vol. 48, no. 8, pp. 1586-1597, Aug. 2012, DOI: 10.1016/j.automatica.2012.05.071.
  8. D. Wang, D. Wang, and W. Wang, "Necessary and sufficient conditions for containment control of multi-agent systems with time delay," Automatica, vol. 103, pp. 418-423, May. 2019. DOI: 10.1016/j.automatica.2018.12.029.
  9. A. Amini, A. Asif, and A. Mohammadi, "Formationcontainment control using dynamic event-triggering mechanism for multi-agent systems," IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 5, pp. 1235-1248, Sep. 2020. DOI: 10.1109/JAS.2020.1003288.
  10. H. Su, G. Jia, and M. Z. Q. Chen, "Semi-global containment control of multi-agent systems with input saturation," IET Control Theory & Applications, vol. 8, no. 18, pp. 2229-2237, Dec. 2014. DOI: 10.1049/iet-cta.2013.0958.
  11. H. Su and M. Z. Q. Chen, "Multi-agent containment control with input saturation on switching topologies," IET Control Theory & Applications, vol. 9, no. 3, pp. 399-409, Feb. 2015. DOI: 10.1049/iet-cta.2014.0393.
  12. Y. H. Lim, H. H. Tack, and S. C. Kang, "PI-based Containment Control for Multi-agent Systems with Input Saturations," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 1, pp. 102-107, Jan. 2021. DOI: 10.6109/jkiice.2021.25.1.102.
  13. Q. Song, F. Liu, H. Su, and A. V. Vasilakos, "Semi-global and global containment control of multi-agent systems with second-order dynamics and input saturation," International Journal of Robust and Nonlinear Control, vol. 26, no. 16, pp. 3460-3480, Nov. 2016. DOI: 10.1002/rnc.3515.
  14. J. Fu, Y. Wang, G. Wen, and T. Huang, "Distributed Robust Global Containment Control of Second-Order Multiagent Systems With Input Saturations," IEEE Transactions on Control of Network Systems, vol. 6, no. 4, pp. 1426-1437, Dec. 2019. DOI: 10.1109/TCNS.2019.2893665.