DOI QR코드

DOI QR Code

식물성 유지 및 수중유적형 유화계에서 육두구 종자 에탄올 추출물의 항산화활성 평가

The antioxidant ability of nutmeg ethanolic extract in bulk oil and oil-in-water emulsion matrices

  • Ji-Eun Kim (Department of Food and Nutrition, Kangwon National University) ;
  • Ji-Yun Bae (Department of Food and Nutrition, Kangwon National University) ;
  • Mi-Ja Kim (Department of Food and Nutrition, Kangwon National University)
  • 투고 : 2023.02.02
  • 심사 : 2023.03.09
  • 발행 : 2023.04.30

초록

본 연구는 육두구 종자가 천연 산화방지제로서 효과적으로 에멀젼 제조 시 안정성을 가지는지를 확인하고자, 80% 에탄올로 추출한 육두구 종자(NM80)의 항산화 활성과 유지 산화안정성을 in vitro system과 실제 유지 및 유화액 산화 시스템에서 평가하고자 하였다. 결과적으로 DPPH 및 ABTS 양이온 라디칼 소거 활성과 ORAC가 평가에서 NM80은 농도 의존적으로 항산화 활성이 증가하였으며, TPC, TFC, FRAP 환원력은 각각 33.74 μmol tannic acid equivalent/g extract, 0.13 μmol quercetin equivalent/g extract, 295.27 μmol ascorbic acid equivalent/g extract로 관찰되었다. 또한, 유지 산화안정성을 측정하기 위하여 옥수수 기름을 180℃에서 90분 산화시켰을 때 NM80 200 ppm 첨가 시 일차산화물인 CDA가가 0.69%로 나타나 대조군보다 3.26% 감소하였으며, 동일한 조건에서 이차산화물인 ρ-AV와 TBA는 대조군보다 각각 16.94, 17.34% 낮았다. 또한, 유화액을 제조하여 NM80 200 ppm 첨가 후 60℃로 4일 동안 산화하였더니, 헤드스페이스 산소 함량은 20.44%로 대조군보다 산소 소비율이 6.29% 감소하였으며, CDA의 양은 대조군보다 82.85% 낮았다. 이러한 항산화 활성과 유지 산화 안정성에서 우수했던 NM80은 향기 성분으로 알릴 페녹시아세테이트, 유제놀 아세테이트, 유제놀 등이 검출되었다. 이와 같은 결과로 항산화 활성과 유지 및 유화액의 산화 안정성의 효과가 있는 NM80을 식품가공 시 첨가한다면 천연 항산화제로서 에멀젼의 품질 향상에 기여할 것으로 판단된다.

The antioxidant ability of 80% ethanolic extract of nutmeg seed (NM80) was evaluated using in vitro assays and bulk oil and oil-in-water (O/W) emulsion matrices. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation radical scavenging, and oxygen radical antioxidant capacity (ORAC) in vitro assays were used to evaluate the antioxidant ability of the extract. The DPPH radical scavenging activities of 25, 50, 100, and 200 ㎍/mL NM80 were 12.5, 20.9, 35.1, and 62.8%, respectively, while the ABTS cation radical scavenging activities were 2.7, 6.5, 30.5, and 29.8%, respectively, demonstrating a dose-dependent effect. The ORAC value was significantly higher at an NM80 concentration of 25 ㎍/mL than the positive control (p<0.05). The conjugated dienoic acid (CDA), ρ-anisidine, and tertiary butyl alcohol values in 90-min-heated corn oil containing 200 ppm of NM80 were significantly reduced by 3.26, 16.94, and 17.34%, respectively, compared to those for the sample without NM80 (p<0.05). However, the headspace oxygen content and CDA value in the O/W emulsion containing 200 ppm of NM80 at 60℃ had 6.29 and 82.85% lower values, respectively, than those for the sample without NM80 (p<0.05). The major volatile compounds of NM80 were allyl phenoxyacetate, eugenol acetate, and eugenol. NM80 could be an effective natural antioxidant in lipid-rich foods in bulk oil or O/W emulsion matrix.

키워드

과제정보

This study was conducted with the support of the National Research Foundation of Korea (Basic Research) in 2021(NRF-2021R1F1A1060533).

참고문헌

  1. Aisyah Y, Irwanda LP, Haryani S, Safriani N. Characterization of corn starch-based edible film with nutmeg oil nanoemulsion. IOP Conf Ser Mater Sci Eng, 352, 012050 (2018)
  2. Al-Maqtari QA, Ghaleb AD, Mahdi AA, Al-Ansi W, Noman AE, Wei M, Al-Adeeb A, Yao W. Stabilization of water-in-oil emulsion of Pulicaria jaubertii extract by ultrasonication: Fabrication, characterization, and storage stability. Food Chem, 350, 129249 (2021)
  3. AOCS. Official and Tentative Methods of the AOCS. 3rd ed, American Oil Chemists' Society Press, Champaign, IL, USA, Method Cd 18-90 (1980)
  4. AOCS. Official and Tentative Methods of the AOCS. 4th ed, American Oil Chemists' Society Press, Champaign, IL, USA, Method Ti la-64 (1990)
  5. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem, 239, 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  6. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  7. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol, 52, 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  8. Chung HJ, Colakoglu AS, Min DB. Relationships among headspace oxygen, peroxide value, and conjugated diene content of soybean oil oxidation. J Food Sci, 69, 83-88 (2004)
  9. Clark JP. Emulsions: When oil and water do mix. Food Technol, 67, 1-9 (2013)
  10. Cuomo F, Cinelli G, Chirascu C, Marconi E, Lopez F. Antioxidant effect of vitamins in olive oil emulsion. Colloid Interfaces, 4, 23 (2020)
  11. Fellegrini N, Ke R, Yang M, Rice-Evans C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,  2'-azinobis (3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay. Meth Enzymol, 299, 379-389 (1999)
  12. Fleming T. PDR for Herbal Medicines. 1st ed. Medical Economics, Montvale, NJ, USA, 545- 546 (1998)
  13. Folin O, Denis W. A new colorimetric method for the determination of vanillin in flavoring extracts. Ind Eng Chem, 4, 670-672 (1912) https://doi.org/10.1021/ie50045a015
  14. Gokalp F. A study on the chemical properties of eugenol and eugenol acetate, clove essential oils. Sigma J Eng and Nat Sci, 34, 407-414 (2016)
  15. Gupta AD, Bansal VK, Babu V, Maithil N. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol, 11, 25-31 (2013) https://doi.org/10.1016/j.jgeb.2012.12.001
  16. Horison R, Sulaiman FO, Alfredo D, Wardana AA. Physical characteristics of nanoemulsion from chitosan/nutmeg seed oil and evaluation of its coating against microbial growth on strawberry. Food Res, 3, 821-827 (2019)
  17. Janssens J, Laekeman GM, Pieters LA, Totte J, Herman AG, Vlietinck AJ. Nutmeg oil: Identification and quantitation of its most active constituents as inhibitors of platelet aggregation. J Ethnopharmacol, 29, 179-188 (1990) https://doi.org/10.1016/0378-8741(90)90054-W
  18. Kabuto H, Tada M, Kohno M. Eugenol [2-methoxy-4-(2-propenyl) phenol] prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. Biol Pharm Bull, 30, 423-427 (2007) https://doi.org/10.1248/bpb.30.423
  19. Khatun M, Eguchi S, Yamaguchi T, Takamura H, Matoba T. Effect of thermal treatment on radical-scavenging activity of some spices. Food Sci Technol Res, 12, 178-185 (2006)
  20. Kim HW, Huh KT, Choi CU. Changes in the volatile flavor components of nutmeg (Myristica fragrans Houttuyn) during aging. Korean J Food Sci Technol, 21, 790-765 (1989)
  21. Kim MA, Han CH, Lee JC, Kim MJ. Antioxidant properties and oxidative stability of celery seeds ethanol extract using in vitro assays and oil-in-water emulsion. Korean J Food Sci Technol, 49, 480-485 (2017)
  22. Kim MJ, Park MH, Jeong MK, Yeo JD, Cho WI, Chang PS, Lee JH. Radical scavenging activity and anti-obedity effects in 3T3-L1 preadipocyte differentiation of Ssuk (Artemisia princeps Pamp.) extract. Food Sci Biotechnol, 19, 535-540 (2010) https://doi.org/10.1007/s10068-010-0074-2
  23. Kiralan M. Volatile compounds of black cumin seeds (Nigella sativa L.) from microwave-heating and conventional roasting. J Food Sci, 77, C481-484 (2012) https://doi.org/10.1111/j.1750-3841.2012.02638.x
  24. Kong B, Zhang H, Xiong YL. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action. Meat Sci, 85, 772-778 (2010) https://doi.org/10.1016/j.meatsci.2010.04.003
  25. Laguerre M, Bayrasy C, Panya A, Weiss J, McClements DJ, Lecomte J, Decker EA, Villeneuve P. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr, 55, 183-201 (2015) https://doi.org/10.1080/10408398.2011.650335
  26. Lee BK, Kim JH, Jung JW, Choi JW, Han ES, Lee SH, Ko KH, Ryu JH. Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol Lett, 157, 49-56 (2005)
  27. Lee J, Surh J. Effect of carrot powder coating on the oxidative stability of the oils used in deep-frying croquette. J Korean Soc Food Sci Nutr, 50, 732-741 (2021) https://doi.org/10.3746/jkfn.2021.50.7.732
  28. Mei L, McClements DJ, Wu J, Decker EA. Iron-catalyzed photosensitized oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem, 61, 307-312 (1998)
  29. Mohd Narawi M, Chiu HI, Yong YK, Mohamad Zain NN, Ramachandran MR, Tham CL, Samsurrijal SF, Lim V. Biocompatible nutmeg oil-loaded nanoemulsion as phyto-repellent. Front Pharmacol, 11, 1-15 (2020) https://doi.org/10.3389/fphar.2020.00001
  30. Muzolf-Panek M, Kaczmarek A, Tomaszewska-Gras J, Cegielska-Radziejewska R, Majcher M. Oxidative and microbiological stability of raw ground pork during chilled storage as affected by plant extracts. Int J Food Prop, 22, 111-129 (2019) https://doi.org/10.1080/10942912.2019.1579834
  31. Nassar MI, Gaara AH, El-Ghorab AH, Farrag A, Shen H, Huq E, Mabry TJ. Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity. Rev Latinoam de Quim, 35, 47-57 (2007)
  32. Olajide OA, Ajayi FF, Ekhelar AI, Awe SO, Makinde JM, Alada AA. Biological effects of Myristica fragrans (nutmeg) extract. Phytother Res, 13, 344-345 (1999) https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<344::AID-PTR436>3.0.CO;2-E
  33. Pavithra B. Eugenol: A review. J Pharm Sci & Res, 6, 153-154 (2014)
  34. Perez-Roses R, Risco E, Vila R, Penalver P, Canigueral S. Biological and nonbiological antioxidant activity of some essential oils. J Agric Food Chem, 64, 4716-4724 (2016) https://doi.org/10.1021/acs.jafc.6b00986
  35. Politano VT, Isola DA, Lalko J, Api AM. The effects of vehicles on the human dermal irritation potentials of allyl esters. Int J Toxicol, 25, 183-193 (2006) https://doi.org/10.1080/10915810600683275
  36. Power FB, Salway AH. The constituents of the essential oil of nutmeg. J Chem Soc Chem, 91, 2037-2058 (1907) https://doi.org/10.1039/CT9079102037
  37. Rasheed A, Laekeman GM, Vlietinck AJ, Janssens J, Hatfield G, Totte J, Herman AG. Pharmacological influence of nutmeg and nutmeg constituents on rabbit platelet function. Planta Med, 50, 222-226 (1984) https://doi.org/10.1055/s-2007-969683
  38. Sava C, Sibru R. Analytical study of the determination of flavonoids in black sea algae. Ovidius Univ Ann Chem, 21, 29-34 (2010)
  39. Sojic B, Tomovic V, Kocic-Tanackov S, Skaljac S, Ikonic P, Dzinic N, Zivkovic N, Jokanovic M, Tasic T, Kravic S. Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control, 54, 282-286 (2015) https://doi.org/10.1016/j.foodcont.2015.02.007
  40. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci, 10, 102-110 (2005) https://doi.org/10.1016/j.cocis.2005.06.004
  41. Su L, Yin JJ, Charles D, Zhou K, Moore J, Yu LL. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem, 100, 990-997 (2007) https://doi.org/10.1016/j.foodchem.2005.10.058
  42. Tan KP, Khoo HE, Azrina A. Comparison of antioxidant components and antioxidant capacity in different parts of nutmeg (Myristica fragrans). Int Food Res J, 20, 1049-1052 (2013)
  43. Tanabe H, Yoshida M, Tomita N. Comparison of the antioxidant activities of 22 commonly used culinary herbs and spices on the lipid oxidation of pork meat. Anim Sci J, 73, 389-393 (2002) https://doi.org/10.1046/j.1344-3941.2002.00054.x
  44. Wang D, Dong Y, Wang Q, Wang X, Fan W. Limonene, the compound in essential oil of nutmeg displayed antioxidant effect in sunflower oil during the deep-frying of Chinese Maye. Food Sci Nutr, 8, 511-520 (2020) https://doi.org/10.1002/fsn3.1333
  45. Yang JH, Tran TTT, Le VVM. Effects of natural antioxidants on the palm olein quality during the heating and frying. J Food Meas Charact, 14, 2713-2720 (2020) https://doi.org/10.1007/s11694-020-00517-x
  46. Yi BR, Kim MJ, Lee JH. Lipid oxidation and antioxidant mechanisms in different matrix. Food Sci Technol, 51, 127-135 (2018)
  47. Zaghi AN, Barbalho SM, Guiguer EL, Otoboni AM. Frying process: From conventional to air frying technology. Food Rev Int, 35, 763-777 (2019) https://doi.org/10.1080/87559129.2019.1600541
  48. Zulueta A, Esteve MJ, Frigola A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem, 114, 310-316 (2009) https://doi.org/10.1016/j.foodchem.2008.09.033