DOI QR코드

DOI QR Code

감압 텀블링 해동이 돈육의 품질 특성에 미치는 영향

Influence of low-pressure tumbling on the quality characteristics of thawed pork

  • Won-Ho Hong (Department of Food Science and Technology, Sunchon National University) ;
  • Jeong Kim (Department of Food Science and Technology, Sunchon National University) ;
  • Yu-Jeong Gwak (Department of Food Science and Technology, Sunchon National University) ;
  • Jiyeon Chun (Department of Food Science and Technology, Sunchon National University)
  • 투고 : 2022.11.13
  • 심사 : 2023.02.08
  • 발행 : 2023.02.28

초록

본 연구는 다양한 해동 조건에서 해동된 돈육의 품질 특성을 비교 분석하여 식육 가공 산업에서 필수적으로 사용되는 해동 공정 개선 및 새로운 해동 설비를 구축하기 위한 기초 자료를 마련하고자 수행되었다. 냉동육(돈육 전지)을 실온 해동(room temp-thawing: 20℃, under air), 저온냉장 해동(low temp-thawing: 4℃ refrigerator, under air), 침수 해동(water thawing: 20℃, water in a vacuum bag), 전자레인지 해동(microwave thawing: microwave-thawing, 260 W), 감압 텀블링 해동(low pressure-tumbling: 20℃, 0.015 bar, tumbling)으로 각각 해동하여 이에 따른 해동 및 품질 특성을 분석하였다. 냉동 돈육의 내부중심온도가 -6℃에서 0℃에 도달하는 시간을 총 해동 시간으로 했을 때, 감압 텀블링 해동의 해동 시간이 20분으로 가장 짧았고, 냉장 해동이 840분으로 가장 긴 것으로 확인되었다. 해동으로 인한 냉동 돈육의 드립 손실(%)은 감압 텀블링 해동에서 0.15%로 가장 낮은 값을 보였으며, 침수 해동에서 가장 많은 드립(1.16%)이 발생되었다. 해동 시간에 큰 차이를 보임에도 불구하고, 해동 돈육의 pH는 해동 조건에 따라 유의적인 차이를 보이지 않은 반면, 해동 육의 총균수와 대장균군 모두 감압 텀블링 해동에서 가장 낮았다. 해동 돈육의 색도(L, a, b)는 해동 방법에 따라 유의적인 차이를 보였으나, 육안으로는 두드러진 차이를 관찰하기 어려웠다. 해동 돈육의 보수력은 감압 텀블러 해동(94.5%)과 침수 해동(94.2%)이 유의적인 차이 없이 높은 보수력을 보였으며, 다음으로 실온 해동(92.2%), 저온냉장 해동(89.4%), 전자레인지 해동(87.2%) 순으로 유의적으로 보수력이 감소하였다. 본 실험은 해동 방법에 따라 냉동 돈육의 품질 특성 및 가공 효율성이 크게 달라지는 것을 보여주었으며, 특히 재래식 해동법에 비해 감압 텀블링 해동 방식이 드립 감량율, 보수력, 미생물 생육도, 해동 속도 등을 비교할 때 가장 우수한 해동 방법이 될 것으로 보인다. 본 연구 결과는 향후 텀블링 방식의 해동기 개발 및 산업화를 위한 기초 자료로 활용할 수 있을 것이다.

As livestock consumption in Korea has been gradually increasing, the quality of the final products has been improved to meet this increased demand. In particular, maintaining the water holding capacity (WHC) and minimizing the drip loss during the thawing of frozen meat are of utmost importance. This study investigated the physicochemical properties of frozen pork subjected to thawing under different conditions: at room temperature (20℃, under air), at a low temperature (4℃ refrigerator, under air), under water (20℃, under water in a vacuum bag), under microwave (microwave-thawing, 260 W), and under low-pressure tumbling (20℃, 0.015 bar, tumbling). The shortest thawing time for frozen pork was recorded upon low-pressure tumbling thus indicating a fast heat transfer. The lowest drip loss (0.2%) and highest WHC (94.5%) were also recorded under this condition. A significantly higher drip loss was observed upon microwave- (1.0%) and water-thawing (1.2%), which resulted in the lowest WHC in microwave thawing (87.2%). The highest total count of aerobic bacteria and coliform group were observed upon room temp thawing while the low pressure tumbling and thawing resulted in the lowest aerobic bacteria (1.90 log CFU/g) and coliform (0.78 log CFU/g) count. Consequently, thawing by low pressure tumbling afforded the best food quality.

키워드

과제정보

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Development of a rapid defrosting machine for meat project, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321041-3).

참고문헌

  1. Bishnoi S, Yadav S, Sheoran N. Effect of tumbling on processing of muscle foods: A review. J Pharm Innov, 6, 157-160 (2017)
  2. Choi EJ, Park HW, Chung YB, Kim JS, Park SH, Chun HH. Effect of supercooling on the storage stability of rapidly frozen-thawed pork loins. Korean J Food Preserv, 24, 168-180 (2017) https://doi.org/10.11002/kjfp.2017.24.2.168
  3. Chun HH, Choi EJ, Han AR, Chung YB, Kim JS, Park SH. Changes in quality of Hanwoo bottom round under different freezing and thawing conditions. J Korean Soc Food Sci Nutr, 45, 230-238 (2016) https://doi.org/10.3746/jkfn.2016.45.2.230
  4. Farouk M, Wieliczko K, Merts I. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci, 66, 171-179 (2004) https://doi.org/10.1016/S0309-1740(03)00081-0
  5. Food Information Statistics System. 2020 Processed Food Segmentation Market Status Processed Meat Products. Korea Agro-Fisheries & Food Trade Corporation, Naju, Korea, p 1-227 (2020)
  6. Kim J, Park SH, Choi DS, Choi SR, Kim YH, Lee SJ, Park CW, Han GJ, Cho BK, Park JW. Frozen food thawing and heat exchanging performance analysis of radio frequency thawing machine. J Korean Inst of Indus Engin, 21, 57-63 (2017)
  7. Kim SY, Song DH, Ham YK, Choi YS, Choi JH, Kim HW. Efficacy of tumbling in soy sauce marination of pork loins: Effects of tumbling time and temperature. J Food Sci Technol, 56, 5282-5288 (2019) https://doi.org/10.1007/s13197-019-03997-y
  8. Hong GH. Application of high-pressure processing for developing novel meat freezing technology. Food Sci Anim Resour, 8, 35-42 (2019)
  9. Jeong JY, Yang HS, Kang GH, Lee JI, Park GB, Joo ST. Effect of freeze-thaw process on myoglobin oxidation of pork loin during cold storage. Food Sci Anim Resour, 26, 1-8 (2006)
  10. Jia G, Nirasawa S, Ji X, Luo Y, Liu H. Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field. Food Chem, 240, 910-916 (2018) https://doi.org/10.1016/j.foodchem.2017.07.138
  11. Jung IC, Park KS, Moon YH. Effect of slaughter weight on the quality and palatability of pork meat from various muscles. J East Asian Soc Dietary Life, 16, 113-119 (2006)
  12. Kang SM, Kang CG, Lee SK. Comparison of quality characteristics of Korean native black pork and modern genotype pork during refrigerated storage after thawing. Korean J Food Sci Ani Resour, 27, 1-7 (2007) https://doi.org/10.5851/kosfa.2007.27.1.1
  13. Kim JS, Oh KS, Lee JS. Comparison of food component between conger eel (Conger myriaster) and sea eel (Muraenesox cinereus) as a sliced raw fish meat. J Korean Fish Soc, 34, 678-684 (2001)
  14. Ko SH, Hong GP, Park SH, Choi MJ, Min SG. Studies on physical properties of pork frozen by various high pressure freezing process. Korean J Food Sci Ani Resour, 26, 464-470 (2006)
  15. Korea National Health and Nutrition Examination Survey (KNHANES). 2020 National Health Statistics. Korea Disease Control and Prevention Agency, Cheongju, Korea, p 101-106 (2022)
  16. Krause R, Ockerman H, Krol B, Moerman P, Plimpton Jr R. Influence of tumbling, tumbling time, trim and sodium tripolyphosphate on quality and yield of cured hams. J Food Sci, 43, 853-855 (1978) https://doi.org/10.1111/j.1365-2621.1978.tb02438.x
  17. Lee JK, Park J. Rapid thawing of frozen pork by 915 MHz microwave. Korean J Food Sci Technol, 31, 54-61 (1999)
  18. Lin R, Yuan H, Wang C, Yang Q, Guo Z. Study on the flavor compounds of fo tiao qiang under different thawing methods based on GC-IMS and electronic tongue technology. Foods, 11, 1330 (2022)
  19. Mirade P, Portanguen S, Sicard J, De Souza, Ndob A. Impact of tumbling operating parameters on salt, water and acetic acid transfers during biltong-type meat processing. J Food Engin, 265, 109686 (2020)
  20. N gatta K, Kondjoyan A, Favier R, Rouel J, Venien A, Astruc T, Gruffat D, Mirade P. Impact of tumbling process on the toughness and structure of raw beef meat pieces. Foods, 10, 2802 (2021)
  21. Park MH, Kwon JE, Kim SR, Won JH, Ji JY, Hwang IK, Kim MR. Physicochemical and microbiological properties of pork by various thawing methods. J East Asian Soc Dietary Life, 22, 298-304 (2012)
  22. Schubring R, Meyer C, Schluter O, Boguslawski S, Knorr D. Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innovative Food Sci Emerging Technol, 4, 257-267 (2003) https://doi.org/10.1016/S1466-8564(03)00036-5
  23. Wang B, Kong B, Li F, Liu Q, Zhang H, Xia X. Changes in the thermal stability and structure of protein from porcine longissimus dorsi induced by different thawing methods. Food Chem, 316, 126375 (2020)
  24. Yang JB, Ko MS. Physicochemical changes in pork boston butts by different cooking methods. Korean J Food Preserv, 17, 351-357 (2010)
  25. Yu LH, Lee ES, Jeong JY, Paik HD, Choi JH, Kim CJ. Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Sci, 71, 375-382 (2005) https://doi.org/10.1016/j.meatsci.2005.04.020
  26. Yun CG, Lee DH, Park JY. Ohmic thawing of a frozen meat chunk. Korean J Food Sci Technol, 30, 842-847 (1998)
  27. Zhang X, Gao T, Song, L, Zhang L, Jiang Y, Li J, Gao F, Zhou G. Effects of different thawing methods on the quality of chicken breast. Int J Food Sci Technol, 52, 2097-2105 (2017) https://doi.org/10.1111/ijfs.13488
  28. Zhou X, Wang Y, Gu Q, Li W. Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of guangxi yellow chicken. Poult Sci, 89, 588-593 (2010) https://doi.org/10.3382/ps.2009-00319