DOI QR코드

DOI QR Code

2D FFT ROI를 이용한 중단거리 차량용 레이더의성능 시험 및 평가

Experimental Test and Performance Evaluation of Mid-Range Automotive Radar Systems Using 2D FFT ROI

  • 투고 : 2023.01.17
  • 심사 : 2023.02.15
  • 발행 : 2023.02.28

초록

본 논문은 ISO 17387규격에서 제공하고 있는 차선변경 보조시스템(LCDAS)에 기반을 둔 중단거리 차량용 레이더 시스템을 개발하였다. 사용한 규격에서는 지능형 이동 시스템에서 사용하고 있는 성능 요구사항과 시험 과정에 대해 기술되어 있다. 중단거리 차량용 레이더 시스템은 최대 80m까지 목표물을 검출할 수 있으며, 갱신주기는 50ms로 단축할 수 있도록 설계하였다. 또한, ROI 전처리 기술을 활용하여 신호처리에서의 계산량을 대폭 감소시킬 수 있었다. 최종적으로, 실제 운전 상황을 설정하여 실제 시험을 수행하였으며, 두 가지의 시나리오를 설정하여 성능을 평가했다.

In this paper, we developed a mid-range automotive radar systems based on the performance requirements and test procedures of the intelligent transport systems, that is lane change decision aid systems (LCDAS). The mid-range automotive radar has the maximum detection range up to 80m and an update time within 50ms. The computational loads of a signal processing were reduced by using ROI preprocessing technique. Considering actual driving environments, radar performance evaluations were conducted in two driving scenarios at an automotive proving ground.

키워드

과제정보

이 논문은 2021년도 제주대학교 교원성과지원사업에 의하여 연구되었음

참고문헌

  1. BS. (2008). Intelligent transport systems - Lane change decision aid systems (LCDAS) - Performance requirements and test procedures, ISO 17387. 
  2. Barton, P. (1980). Digital beam forming for radar, IEE Proceedings F (Communications, Radar and signal Processing), vol. 127, no.4, pp. 266-277, Aug.  https://doi.org/10.1049/ip-f-1.1980.0041
  3. Jin, Y. S., Kim, S. D., Ju, Y. H., and Lee, J. (2016). Development of Real-time LCA System based on Automotive Radar, The International Symposium on Advances in Embedded System and Applications, Lisbon, Portugal, February 21-25. 
  4. Ju, Y. H., Jin, Y. S., and Lee, J. (2014). Design and Implementation of a 24Ghz FMCW radar system for automotive applications, International Radar Conference, pp. 1-4. 
  5. Kim, B. S., Kim, S. D., and Lee, J. (2018). A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar, Sensors, vol. 18, no. 5, pp. 1560. 
  6. Kim, S. D., Kim, B. S., and Lee, J. (2017). Low-complexity spectral partitioning based MUSIC algorithm for automotive radar, ELEKTRONIKA IR ELEKTROTECHNIKA, vol. 23, no. 4, pp.33-38. 
  7. Hyun, E., Jin, Y. S., and Lee, J. (2016). A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar, Sensors, vol.16, no.1. 
  8. Hyun, E., Oh, W., and Lee, J. (2015). Two-Step Pairing Algorithm for Target Range and Velocity Detection in FMCW Automotive Radar, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, v.E98A, no.3, pp.801-810.  https://doi.org/10.1587/transfun.E98.A.801
  9. Khodjaev, J., Chang, B. Y., and Lee, J. (2014). Robust antenna array calibration and accurate angle estimation based on least trimmed squares, Annales des Telecommunications/Annals of Telecommunications, v.69, no.9-10, pp.553-557.  https://doi.org/10.1007/s12243-013-0403-6
  10. Hyun, E., Jin, Y. S., and Lee, J. (2017). Design and development of automotive blind spot detection radar system based on ROI preprocessing, International Journal of Automotive Technology, vol.18, no.1, 165-177.   https://doi.org/10.1007/s12239-017-0017-5