DOI QR코드

DOI QR Code

Method of Multiple Scenario Transformation and Simulation Based Evaluation for Automated Vehicle Assessment

자율주행자동차 평가를 위한 다중 시나리오 변환과 시뮬레이션 기반 평가 방법

  • Donghyo Kang (Dept. of D.N.A Plus Fusion, Ajou Univ.) ;
  • Inyoung Kim (Dept. of D.N.A Plus Fusion, Ajou Univ.) ;
  • Seong-Woo Cho (Korea Automobile Testing & Research Institute, Korea Transportation Safety Authority) ;
  • Ilsoo Yun (Dept. of Transportation System Eng., Ajou Univ.)
  • 강동효 (아주대학교 D.N.A 플러스 융합학과) ;
  • 김인영 (아주대학교 D.N.A 플러스 융합학과) ;
  • 조성우 (자동차안전연구원 결함조사본부) ;
  • 윤일수 (아주대학교 교통시스템공학과)
  • Received : 2023.10.09
  • Accepted : 2023.11.14
  • Published : 2023.12.31

Abstract

The importance of evaluating the safety of Automated Vehicles (AV) is increasing with the advances in autonomous driving technology. Accordingly, an evaluation scenario that defines in advance the situations AV may face while driving is being used to conduct efficient stability evaluation. On the other hand, the single scenarios currently used in conventional evaluations address limited situations within short segments. As a result, there are limitations in evaluating continuous situations that occur on real roads. Therefore, this study developed a set of multiple scenarios that allow for continuous evaluation across entire sections of roads with diverse geometric structures to assess the safety of AV. In particular, the conditions for connecting individual scenarios were defined, and a methodology was proposed for developing concrete multiple scenarios based on the scenario evaluation procedure of the PEGASUS project. Furthermore, a simulation was performed to validate the practicality of these multiple scenarios.

자율주행 기술의 발전과 함께 자율주행차(automated vehicle, AV)의 안전성 평가의 중요성이 증가하고 있다. 이에 따라 효율적인 안정성 평가를 진행하기 위해 AV가 주행 중 직면할 수 있는 상황을 사전에 정의한 평가 시나리오를 활용하고 있다. 그러나 기존에 활용되는 시나리오는 짧은 구간 내에서 한정적인 상황만을 다루고 있다. 따라서, 실제 도로에서 발생하는 연속적인 상황을 평가하지 못한다는 한계가 존재한다. 이에 본 연구에서는 AV의 안전성을 강도 높게 평가하기 위해 단일 시나리오를 다양한 기하구조가 존재하는 도로 전체 구간을 대상으로 연속적인 평가가 가능한 다중 시나리오로 변환하고자 한다. 특히, 시나리오를 연결하는 조건을 정의하고, 변환된 다중 시나리오를 상황, 범위, 실험 시나리오로 발전시키는 구체적인 방법론을 제시하였으며, 시뮬레이션으로 다중 시나리오를 구현하여 검증하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 22AMDP-C162184-02). 또한, 한국ITS학회 2023년 춘계학술대회에서 발표된 내용을 발전 및 보강하여 학회지화하였음을 밝힙니다.

References

  1. Ackermann, C., Isermann, R., Min S. and Kim, C.(2014), "Collision avoidance with automatic braking and swerving", IFAC Proceedings Volumes, vol. 47, no. 3, pp.10694-10699. https://doi.org/10.3182/20140824-6-ZA-1003.00353
  2. ASAM, https://www.asam.net/index.php?eID=dumpFile&t=f&f=4550&token=cd56bf3f926bba1c795bb af66848de73f6b4ad67, 2023.09.25.
  3. ASAM, https://www.asam.net/standards/, 2023a.09.24.
  4. ASAM, https://www.asam.net/standards/detail/openlabel/, 2023b.09.24.
  5. ASAM, https://www.asam.net/standards/detail/openodd/, 2023c.09.24.
  6. Baek, Y., Shin, S., Park, J., Lee, H., Eom, S., Cho, S. and Shin, J.(2021), "A study on the risk analysis and fail-safe verification of autonomous vehicles using V2X based on intersection scenarios", The Journal of the Korea Institute of Intelligent Transport Systems, vol. 20, no. 6, pp.299-312. https://doi.org/10.12815/kits.2021.20.6.299
  7. Bernardin Jr, V. L., Mansfield, T., Swanson, B., Sadrsadat, H. and Bindra, S.(2019), "Scenario modeling of autonomous vehicles with trip-based models", Transportation Research Record, vol. 2673, no. 10, pp.61-270. https://doi.org/10.1177/0361198119837242
  8. Calo, A., Arcaini, P., Ali, S., Hauer, F. and Ishikawa, F.(2020), "Generating Avoidable Collision Scenarios for Testing Autonomous Driving Systems", 2020 IEEE 13th International Conference on Software Testing, Validation and Verification(ICST), Porto, Portugal, pp.375-386.
  9. Chen, H., Ren, H., Li, R., Yang, G. and Ma, S.(2022), "Generating Autonomous Driving Test Scenarios based on OpenSCENARIO", 2022 9th International Conference on Dependable Systems and Their Applications(DSA), pp.650-658.
  10. European Automobile Manufacturers Association(2019), Road Safety, pp.1-8.
  11. Gambi, A., Mueller, M. and Fraser, G.(2019), "Automatically testing self-driving cars with search-based procedural content generation", Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.318-328.
  12. Kim, H. and Heo, G.(2018), "Trends and Prospects of Autonomous Driving Technology Research", The Journal of Korean Institute of Communications and Information Sciences, vol. 35, no. 5, pp.3-12.
  13. Kim, I., Kang, D., Jeong, H., Lee, S. and Yun, I.(2023), "Method of Evaluating Multiple Scenarios in a Single Simulation Run for Automated Vehicle Assessment", Sensors, vol. 23, no. 19, pp.1-23. https://doi.org/10.1109/JSEN.2022.3230181
  14. Ko, W., Park, S., Yun, J., Park, S. and Yun, I.(2022), "Development of a framework for generating driving safety assessment scenarios for automated vehicles", Sensors, vol. 22, no. 16, pp.1-22. https://doi.org/10.1109/JSEN.2021.3136033
  15. Kusari, A., Li, P., Yang, H., Punshi, N., Rasulis, M., Bogard, S. and LeBlanc, D. J.(2022), "Enhancing SUMO simulator for simulation based testing and validation of autonomous vehicles", 2022 IEEE Intelligent Vehicles Symposium(IV), pp.829-835.
  16. Lee, W., Kang, M., Yoonm Y. and Hwang, K.(2022), "Predicting accident vulnerable situation and extracting scenarios of automated vehicleusing vision transformer method based on vision data", The Journal of the Korea Institute of Intelligent Transport Systems, vol. 21, no. 5, pp.233-252. https://doi.org/10.12815/kits.2022.21.5.233
  17. Li, G., Yang, Y., Zhang, T., Qu, X., Cao, D., Cheng, B. and Li, K.(2021), "Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios", Transportation Research Part C: Emerging Technologies, vol. 122, pp.1-17. https://doi.org/10.1016/j.trc.2020.102820
  18. MORAI, https://help-morai-sim.scrollhelp.site/, 2023.09.18.
  19. Park, H., Park, J., Lee, K. and Song, C.(2021), "Comparative Analysis of the Psychological State and Driving Safety for Driving within the Platoons of Trucks by Drivers Driving Performance", The Journal of the Korea Institute of Intelligent Transport Systems, vol. 20, no. 6, pp.147-161. https://doi.org/10.12815/kits.2021.20.6.147
  20. Park, S., Park, S., Jeong, H., Yun, I. and So, J.(2021), "Scenario-mining for level 4 automated vehicle safety assessment from real accident situations in urban areas using a natural language process", Sensors, vol. 21, no. 20, pp.1-26. https://doi.org/10.1109/JSEN.2020.3039123
  21. Park, S., So, J., Ko, H., Jeong, H. and Yun, I.(2019), "Development of Safety Evaluation Scenarios for Autonomous Vehicle Tests Using 5-Layer Format(Case of the Community Road)", The Journal of the Korea Institute of Intelligent Transportation Systems, vol. 18, no. 2, pp.114-128. https://doi.org/10.12815/kits.2019.18.2.114
  22. PEGASUS Project(2019), Scenario Description and Knowledge-Based Scenario Generation, pp.1-3.
  23. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B. and Diermeyer, F.(2020), "Survey on Scenario-Based Safety Assessment of Automated Vehicles", IEEE Access, vol. 8, pp.87456-87477. https://doi.org/10.1109/ACCESS.2020.2993730
  24. SAE International(2018), Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, pp.1-41.
  25. SAKURA Project, https://www.sakura-prj.go.jp/, 2023.09.24.
  26. SET Level, https://setlevel.de/en/project, 2023.09.24.
  27. Song, Q., Tan, K., Runeson, P. and Persson, S.(2023), "Critical scenario identification for realistic testing of autonomous driving systems", Software Quality Journal, vol. 31, no. 2, pp.441-469. https://doi.org/10.1007/s11219-022-09604-2
  28. Tamke, A., Dang, T. and Breuel, G.(2011), "A flexible method for criticality assessment in driver assistance systems", 2011 IEEE Intelligent Vehicles Symposium(IV), pp.697-702.
  29. Thal, S., Wallis, P., Henze, R., Hasegawa, R., Nakamura, H., Kitajima, S. and Abe, G.(2023), "Towards Realistic, Safety-Critical and Complete Test Case Catalogs for Safe Automated Driving in Urban Scenarios", 2023 IEEE Intelligent Vehicles Symposium(IV), pp.1-8.
  30. UNECE(2021), New Assessment / Test Method for Automated Driving (NATM) Master Document (Final Draft). 4(February), pp.1-5.
  31. Wang, W., Wu, L., Li, X., Qu, F., Li, W., Ma, Y. and Ma, D.(2023), "An Evaluation Method for Automated Vehicles Combining Subjective and Objective Factors", Machines, vol. 11, no. 6, p.597. https://doi.org/10.3390/machines11060597
  32. Weber, H., Bock, J., Klimke, J., Roesener, C., Hiller, J., Krajewski, R., Zlocki, A. and Eckstein, L.(2019), "A framework for definition of logical scenarios for safety assurance of automated driving", Traffic Injury Prevention, pp.S65-S70.
  33. Zhao, S., Wei, Z., Wang, P., Ma, T. and Guo, K.(2022), "An objective evaluation method for automated vehicle virtual test", Expert Systems with Applications, vol. 206, pp.1-10. https://doi.org/10.1016/j.eswa.2022.117940