DOI QR코드

DOI QR Code

Tour-based Personalized Trip Analysis and Calibration Method for Activity-based Traffic Demand Modelling

활동기반 교통수요 모델링을 위한 투어기반 통행분석 및 보정방안

  • Yegi Yoo (Dept. of Cho Chun Shik Graduate School of Mobility., KAIST) ;
  • Heechan Kang (Mobility Research Department, Korea Transportation Safety Authority) ;
  • Seungmo Yoo (Graduate Program in Technology Policy, Yonsei University) ;
  • Taeho Oh (Dept. of Cho Chun Shik Graduate School of Mobility., KAIST)
  • 유예지 (한국과학기술원 조천식모빌리티대학원) ;
  • 강희찬 (한국교통안전공단 모빌리티플랫폼처) ;
  • 유승모 (연세대학교 기술정책대학원) ;
  • 오태호 (한국과학기술원 조천식모빌리티대학원)
  • Received : 2023.10.23
  • Accepted : 2023.11.22
  • Published : 2023.12.31

Abstract

Autonomous driving technology is shaping the future of personalized travel, encouraging personalized travel, and traffic impact could be influenced by individualized travel behavior during the transition of driving entity from human to machine. In order to evaluate traffic impact, it is necessary to estimate the total number of trips based on an understanding of individual travel characteristics. The Activity-based model(ABM), which allows for the reflection of individual travel characteristics, deals with all travel sequences of an individual. Understanding the relationship between travel and travel must be important for assessing traffic impact using ABM. However, the ABM has a limitation in the data hunger model. It is difficult to adjust in the actual demand forecasting. Therefore, we utilized a Tour-based model that can explain the relationship between travels based on household travel survey data instead. After that, vehicle registration and population data were used for correction. The result showed that, compared to the KTDB one, the traffic generation exhibited a 13% increase in total trips and approximately 9% reduction in working trips, valid within an acceptable margin of error. As a result, it can be used as a generation correction method based on Tour, which can reflect individual travel characteristics, prior to building an activity-based model to predict demand due to the introduction of autonomous vehicles in terms of road operation, which is the ultimate goal of this study.

자율주행기술의 발달은 점차 개인화된 통행을 유도하며, 자율주행차량으로의 전환으로 인한 도로운영 측면에서 교통 영향력은 개인차량을 이용한 수요에 의해 가장 큰 영향력을 받는다. 따라서, 교통 영향력 검토를 위해서는 개인통행특성 이해를 기반한 통행발생량 산정이 필요하다. 개인 통행특성 반영이 가능한 Activity-based model(ABM)은 개인의 모든 이동을 다루므로 통행과 통행 사이의 관계에 대한 이해가 선행되어야 한다. 하지만, ABM은 실제 수요예측에서 데이터 구득문제와 같이 많은 한계점이 있다. 따라서, 본 연구에서는 가구통행실태조사자료를 기반으로 통행간 관계를 설명할 수 있는 Tour-based 모형을 활용하였다. 또한, 샘플조사 자료의 전수화를 위해 차량등록대수 및 인구수 데이터를 활용하여 개인차량발생량 보정방안을 제시하였다. 통행발생량 분석결과, KTDB와 비교하였을 때 본 연구에서 전체통행발생량은 약 13% 높았으며, 업무통행의 경우 약 9% 차이로 합리적인 오차수준으로 분석되었다. 결과적으로 본 연구의 궁극적인 목표인 도로운영 측면의 자율주행차량 도입에 따른 수요예측을 위해 Activity-based 모형 구축에 앞서 개인통행특성을 반영할 수 있는 Tour를 기반으로 발생량 보정방안으로 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00141102)

References

  1. Adenaw, L. and Bachmeier, Q.(2022), "Generating Activity-Based Mobility Plans from Trip-Based Models and Mobility Surveys", Applied Sciences, vol. 12, no. 17, p.8456.
  2. AG, P. P. T. V.(2000), VISEM User Manual (20.09. 01) Version 7.5.
  3. Agrawal, A., Udmale, S. S. and Sambhe, V. K.(2018), "Extended four-step travel demand forecasting model for urban planning", Information and Communication Technology for Sustainable Development: Proceedings of ICT4SD 2016, Springer Singapore, vol. 2, pp.191-198.
  4. Apronti, D. T. and Ksaibati, K.(2018), "Four-step travel demand model implementation for estimating traffic volumes on rural low-volume roads in Wyoming", Transportation Planning and Technology, vol. 41, no. 5, pp.557-571. https://doi.org/10.1080/03081060.2018.1469288
  5. Bhat, C. R. and Koppelman, F. S.(1999), "Activity-based modeling of travel demand", In Handbook of transportation Science, Boston, MA, Springer US, pp.35-61.
  6. Castiglione, J., Bradley, M. and Gliebe, J.(2015), Activity-based travel demand models: A primer, No. SHRP 2 Report S2-C46-RR-1.
  7. Childress, S., Nichols, B., Charlton, B. and Coe, S.(2015), "Using an activity-based model to explore the potential impacts of automated vehicles", Transportation Research Record, vol. 2493, no. 1, pp.99-106. https://doi.org/10.3141/2493-11
  8. Cirillo, C. and Axhausen, K. W.(2002), "Mode choice of complex tours: A panel analysis", Arbeitsberichte Verkehrs-und Raumplanung, vol. 142.
  9. Davidson, W., Donnelly, R., Vovsha, P., Freedman, J., Ruegg, S., Hicks, J., Castiglione, J. and Picado, R.(2007), "Synthesis of first practices and operational research approaches in activity-based travel demand modeling", Transportation Research Part A: Policy and Practice, vol. 41, no. 5, pp.464-488. https://doi.org/10.1016/j.tra.2006.09.003
  10. Dias, F. F., Nair, G. S., Ruiz-Juri, N., Bhat, C. R. and Mirzaei, A.(2020), "Incorporating autonomous vehicles in the traditional four-step model", Transportation Research Record, vol. 2674, no. 7, pp.348-360.
  11. Eom, J. K.(2007), "Introducing a spatial-temporal activity-based approach for estimating travel demand at KTX stations", Proceedings of the Korean Society for Railway Conference, The Korean Society for Railway, pp.734-743.
  12. Fagnant, D. J. and Kockelman, K.(2015), "Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations", Transportation Research Part A: Policy and Practice, vol. 77, pp.167-181. https://doi.org/10.1016/j.tra.2015.04.003
  13. Ferdous, N., Bhat, C., Vana, L., Schmitt, D., Bowman, J., Bradley, M. and Pendyala, R.(2011), Comparison of Four-Step Versus Tour-Based Models in Predicting Travel Behavior Before and After Transportation System Changes: Results Interpretation and Recommendations (No. FHWA/OH-2011/4), University of Texas at Austin, Center for Transportation Research.
  14. Festa, D. C., Condino, D. and Mazzulla, G.(2006), "Experimental tour-based travel demand models", European Journal of Operational Research, vol. 175, no. 3, pp.1472-1483. https://doi.org/10.1016/j.ejor.2005.02.023
  15. Gallo, M.(2023), "Models, algorithms, and equilibrium conditions for the simulation of autonomous vehicles in exclusive and mixed traffic", Simulation Modelling Practice and Theory, vol. 129, 102838.
  16. Guo, Y., Yang, F., Xie, S. and Yao, Z.(2023), "Activity-based model based on long short-term memory network and mobile phone signalling data", Transportmetrica A: Transport Science, pp.1-21.
  17. Haboucha, C. J., Ishaq, R. and Shiftan, Y.(2017), "User preferences regarding autonomous vehicles", Transportation Research Part C: Emerging Technologies, vol. 78, pp.37-49. https://doi.org/10.1016/j.trc.2017.01.010
  18. Hafezi, M. H., Liu, L. and Millward, H.(2019), "A time-use activity-pattern recognition model for activity-based travel demand modeling", Transportation, vol. 46, pp.1369-1394. https://doi.org/10.1007/s11116-017-9840-9
  19. Hamad, K. and Obaid, L.(2022), "Tour-based travel demand forecasting model for a university campus", Transport Policy, vol. 117, pp.118-137. https://doi.org/10.1016/j.tranpol.2022.01.001
  20. Hasnine, M. S. and Habib, K. N.(2018), "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling", Transport Policy, vol. 71, pp.70-80. https://doi.org/10.1016/j.tranpol.2018.07.011
  21. Hasnine, M. S. and Nurul Habib, K.(2021), "Tour-based mode choice modelling as the core of an activity-based travel demand modelling framework: A review of state-of-the-art", Transport Reviews, vol. 41, no. 1, pp.5-26. https://doi.org/10.1080/01441647.2020.1780648
  22. Kim, I. G.(2006), "Reconsideration of settlement and forecasting procedures for traffic demand analysis(교통수요분석을 위한 정산과 예측 절차에 대한 재고찰)", Transportation Technology and Policy, vol. 3, no. 1, pp.87-106.
  23. Lim, K. K., Kim. S. G. and Chung, S. B.(2013), "Activity-based Approaches for Travel Demand Modeling: Reviews on Developments and Implementations", Journal of the Korean Scoiety of Civil Engineers, vol. 33, no. 2, pp.719-727. https://doi.org/10.12652/Ksce.2013.33.2.719
  24. Lim, Y. T. and Kim, S. G.(2006), "Parameter Calibration of Gravity Model Considering Future Travel Patterns", The Korea Spatial Planning Review, pp.93-104.
  25. McFadden, D.(1974), "The measurement of urban travel demand", Journal of Public Economics, vol. 3 no. 4, pp.303-328. https://doi.org/10.1016/0047-2727(74)90003-6
  26. McNally, M. G.(2000), "THE FOUR-STEP MODEL", In HANDBOOK OF TRANSPORT MODELLING, Emerald Group Publishing Limited.
  27. Miller, E. J., Roorda, M. J. and Carrasco, J. A.(2005), "A tour-based model of travel mode choice", Transportation, vol. 32, pp.399-422. https://doi.org/10.1007/s11116-004-7962-3
  28. Pinjari, A. R. and Bhat, C. R.(2011), "Activity-based travel demand analysis", A Handbook of Transport Economics, vol. 10, pp.213-248. https://doi.org/10.4337/9780857930873.00017
  29. Recker, W. W.(2001), "A bridge between travel demand modeling and activity-based travel analysis", Transportation Research Part B: Methodological, vol. 35, no. 5, pp.481-506. https://doi.org/10.1016/S0191-2615(00)00006-0
  30. Rossi, T. F. and Shiftan, Y.(1997), "Tour based travel demand modeling in the US", IFAC (International Federation of Automatic Control) Proceedings, vol. 30, no. 8, pp.381-386.
  31. Seo, S. E., Jeong, J. H. and Kim, S. G.(2006), "Analysis of the Elderly Travel Characteristics and Travel Behavior with Daily Activity Schedules (the Case of Seoul, Korea)", Journal of Korean Society of Transportation, vol. 24, no. 5, pp.89-108.
  32. Shiftan, Y. and Ben-Akiva, M.(2011), "A practical policy-sensitive, activity-based, travel-demand model", The Annals of Regional Science, vol. 47, pp.517-541. https://doi.org/10.1007/s00168-010-0393-5
  33. Stocker, A. and Shaheen, S.(2018), Shared automated mobility: Early exploration and potential impacts, Springer International Publishing, pp.125-139.
  34. Vastberg, O. B., Karlstrom, A., Jonsson, D. and Sundberg, M.(2020), "A dynamic discrete choice activity-based travel demand model", Transportation Science, vol. 54, no. 1, pp.21-41. https://doi.org/10.1287/trsc.2019.0898
  35. Vishnu, B. and Srinivasan, K. K.(2013), "Tour-based departure time models for work and non-work tours of workers", Procedia-Social and Behavioral Sciences, vol. 104, pp.630-639. https://doi.org/10.1016/j.sbspro.2013.11.157
  36. Wang, D. and Cheng, T.(2001), "A spatio-temporal data model for activity-based transport demand modelling", International Journal of Geographical Information Science, vol. 15, no. 6, pp.561-585. https://doi.org/10.1080/13658810110046934
  37. Yu, X., Van den Berg, V. A. and Verhoef, E. T.(2022), "Autonomous cars and activity-based bottleneck model: How do in-vehicle activities determine aggregate travel patterns?", Transportation Research Part C: Emerging Technologies, vol. 139, 103641.