DOI QR코드

DOI QR Code

바이칼레인(baicalein)이 peptidoglycan으로 자극된 RAW 264.7 mouse macrophages의 hydrogen peroxide 생성에 미치는 영향

Effects of Baicalein on hydrogen peroxide productions in RAW 264.7 mouse macrophages stimulated by peptidoglycan

  • 박완수 (가천대학교 한의과대학 병리학교실)
  • Wansu, Park (Department of Pathology, College of Korean Medicine, Gachon University)
  • 투고 : 2022.10.13
  • 심사 : 2023.01.25
  • 발행 : 2023.01.30

초록

Objectives : The aim of this study was to investigate the effect of baicalein (BA) on the production of hydrogen peroxide in peptidoglycan-stimulated RAW 264.7 mouse macrophages. Methods : Peptidoglycan-stimulated RAW 264.7 were incubated with baicalein at concentrations of 50 and 100 µM. Incubation time is 30 min, 2 h, 12 h, and 18 h. After incubation, The production of hydrogen peroxide in RAW 264.7 was measured with dihydrorhodamine 123 assay. Berberine and gallic acid were used as the comparative materials. Results : BA at the concentration of 50 and 100 µM did not show cytotoxicity on RAW 264.7 for 24 h incubation. For 30 min, 2 h, 12 h, and 18 h incubation, BA at the concentration of 50 and 100 µM significantly inhibited the production of hydrogen peroxide in RAW 264.7 stimulated by peptidoglycan (p<0.05). In details, production of hydrogen peroxide in peptidoglycan-stimulated RAW 264.7 treated for 30 min with BA at concentrations of 50 and 100 µM was 93.91% and 93.52% of the control group treated with peptidoglycan only, respectively; the production of hydrogen peroxide for 2 h was 93.8% and 92.71%, respectively; production of hydrogen peroxide for 12 h was 94.86% and 95.93%, respectively; production of hydrogen peroxide for 18 h was 95.37% and 96.48%, respectively. Conclusions : BA might have anti-oxidative activity related to its inhibition of hydrogen peroxide production in peptidoglycan-stimulated RAW 264.7 macrophages.

키워드

참고문헌

  1. Chen Y, Liu T, Wang K, Hou C, Cai S, Huang Y, Du Z, Huang H, Kong J, Chen Y. Baicalein Inhibits Staphylococcus aureus Biofilm Formation and the Quorum Sensing System In Vitro. PLoS One. 2016 ; 11(4) : e0153468.
  2. Kim DH, Lee JY, Kim YJ, Kim HJ, Park W. Rubi Fructus Water Extract Alleviates LPS-Stimulated Macrophage Activation via an ER Stress-Induced Calcium/CHOP Signaling Pathway. Nutrients. 2020 ; 12(11) : 3577.
  3. Kim YJ, Kim HJ, Lee JY, Kim DH, Kang MS, Park W. Anti-Inflammatory Effect of Baicalein on Polyinosinic⁻Polycytidylic Acid-Induced RAW 264.7 Mouse Macrophages. Viruses. 2018 ; 10(5) : 224.
  4. Yoon SB, Lee YJ, Park SK, Kim HC, Bae H, Kim HM, Ko SG, Choi HY, Oh MS, Park W. Antiinflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J. Ethnopharmacol. 2009 ; 125(2) : 286-90. https://doi.org/10.1016/j.jep.2009.06.027
  5. Han HS, Park WS, Lee YJ. Studies on the immuno modulating acitivity of fermented Artemisiae argyi folium extract. Kor. J. Herbology. 2008 ; 23(3) ; 103-12.
  6. Park WS. Effect of Water Extract from Artemisiae Argi Folium on Mouse Macrophage Stimulated by LPS. Kor. J. Herbology. 2009 ; 24(1) : 151-7.
  7. Lee JY, Lee YJ, Park WS. Anti-inflammatory Effects of Fermented Houttuyniae Herba Water Extract on LPS-induced Mouse Macrophage. Kor. J. Herbology. 2010 ; 25(3) : 27-34. https://doi.org/10.6116/KJH.2010.25.3.027
  8. Park W. Effect of Scutellariae Radix Water Extract on Hydrogen Peroxide Production in RAW 264.7 Mouse Macrophages. Kor. J. Herbology. 2011 ; 26(1) : 53-8. https://doi.org/10.6116/KJH.2011.26.1.053
  9. Oh CS, Park W. Effects of Baicalein on hydrogen peroxide productions in RAW 264.7 macrophages stimulated by lipoteichoic acid. Kor. J. Herbology. 2022;37(5):53-61.
  10. Park W. Agastache rugosa modulates productions of inflammatory mediators in RAW 264.7 stimulated by lipopolysaccharide. Kor. J. Herbology. 2022;37(1):41-50.
  11. Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol. Microbiol. 2018 ; 107(2) : 142-63. https://doi.org/10.1111/mmi.13880
  12. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008 ; 32(2) : 149-67. https://doi.org/10.1111/j.1574-6976.2007.00094.x
  13. Trindade BC, Chen GY. NOD1 and NOD2 in inflammatory and infectious diseases. Immunol Rev. 2020 ; 297(1) : 139-61. https://doi.org/10.1111/imr.12902
  14. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014 ; 41(6) : 898-908. https://doi.org/10.1016/j.immuni.2014.12.010
  15. Ellouz F, Adam A, Ciorbaru R, Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun. 1974 ; 59(4) : 1317-25. https://doi.org/10.1016/0006-291X(74)90458-6
  16. Myhre AE, Aasen AO, Thiemermann C, Wang JE. Peptidoglycan--an endotoxin in its own right? Shock. 2006 ; 25(3) : 227-35. https://doi.org/10.1097/01.shk.0000191378.55274.37
  17. Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol. 2021 ; 11 : 620339.
  18. Arora SK, Naqvi N, Alam A, Ahmad J, Alsati BS, Sheikh JA, Kumar P, Mitra DK, Rahman SA, Hasnain SE, Ehtesham NZ. Mycobacterium smegmatis Bacteria Expressing Mycobacterium tuberculosis-Specific Rv1954A Induce Macrophage Activation and Modulate the Immune Response. Front Cell Infect Microbiol. 2020 ; 10 : 564565.
  19. Newman SL. Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol. 1999 ; 7(2) : 67-71. https://doi.org/10.1016/S0966-842X(98)01431-0
  20. Jantsch J, Chikkaballi D, Hensel M. Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev. 2011 ; 240(1) : 185-95. https://doi.org/10.1111/j.1600-065X.2010.00981.x
  21. Oh CS, Park W. Agastache rugosa modulates productions of inflammatory mediators in RAW 264.7 stimulated by lipopolysaccharide. Kor. J. Herbology. 2022;37(5):53-61.
  22. Park W, Chang MS, Kim H, Choi HY, Yang WM, Kim DR, Park EH, Park SK. Cytotoxic effect of gallic acid on testicular cell lines with increasing H2O2 level in GC-1 spg cells. Toxicol In Vitro. 2008 ; 22(1) : 159-63. https://doi.org/10.1016/j.tiv.2007.08.010
  23. Wang H, Hui KM, Xu S, Chen Y, Wong JT, Xue H. Two flavones from Scutellaria baicalensis Georgi and their binding affinities to the benzodiazepine site of the GABAA receptor complex. Pharmazie. 2002 ; 57(12) : 857-8.
  24. de Carvalho RS, Duarte FS, de Lima TC. Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav Brain Res. 2011 ; 221(1) : 75-82. https://doi.org/10.1016/j.bbr.2011.02.038
  25. Hsieh CJ, Hall K, Ha T, Li C, Krishnaswamy G, Chi DS. Baicalein inhibits IL-1beta- and TNFalpha-induced inflammatory cytokine production from human mast cells via regulation of the NF-kappaB pathway. Clin Mol Allergy. 2007 ; 5 : 5.
  26. Chen Y, Wang J, Hong DY, Chen L, Zhang YY, Xu YN, Pan D, Fu LY, Tao L, Luo H, Shen XC. Baicalein has protective effects on the 17β-estradiol-induced transformation of breast epithelial cells. Oncotarget. 2017 ; 8(6) : 10470-84. https://doi.org/10.18632/oncotarget.14433
  27. Austin JR, Kirkpatrick BJ, Rodriguez RR, Johnson ME, Lantvit DD, Burdette JE. Baicalein Is a Phytohormone that Signals Through the Progesterone and Glucocorticoid Receptors. Horm Cancer. 2020 ; 11(2) : 97-110. https://doi.org/10.1007/s12672-020-00382-6
  28. Zhang X, Qin Y, Ruan W, Wan X, Lv C, He L, Lu L, Guo X. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytother Res. 2021 ; 35(8) :4442-55. https://doi.org/10.1002/ptr.7149
  29. Deschamps JD, Kenyon VA, Holman TR. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem. 2006 ; 14(12) : 4295-301. https://doi.org/10.1016/j.bmc.2006.01.057
  30. Xiong Z, Jiang B, Wu PF, Tian J, Shi LL, Gu J, Hu ZL, Fu H, Wang F, Chen JG. Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biol Pharm Bull. 2011 ; 34(2) : 253-9. https://doi.org/10.1248/bpb.34.253
  31. Li J, Yang Y, Wang H, Ma D, Wang H, Chu L, Zhang Y, Gao Y. Baicalein Ameliorates Myocardial Ischemia Through Reduction of Oxidative Stress, Inflammation and Apoptosis via TLR4/MyD88/MAPKS/NF-κB Pathway and Regulation of Ca2+ Homeostasis by L-type Ca2+ Channels. Front Pharmacol. 2022 ; 13 : 842723.
  32. Li D, Shi G, Wang J, Zhang D, Pan Y, Dou H, Hou Y. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloidderived suppressor cells. Arthritis Res Ther. 2019 ; 21(1) : 105.
  33. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, Lu R, Huang B, Tan W, Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021 ; 36(1) : 497-503. https://doi.org/10.1080/14756366.2021.1873977
  34. Li B, Chen K, Qian N, Huang P, Hu F, Ding T, Xu X, Zhou Q, Chen B, Deng L, Ye T, Guo L. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med. 2021 ; 25(11) : 5283-94. https://doi.org/10.1111/jcmm.16538
  35. Kim HJ, Kim YJ, Park W. Berberine modulates hyper‑inflammation in mouse macrophages stimulated with polyinosinic‑polycytidylic acid via calcium‑ CHOP/STAT pathway. Sci Rep. 2021 ; 11(1) : 11298.