DOI QR코드

DOI QR Code

Relieving effect for respiratory inflammation of Gumiganghwal-tang

구미강활탕(九味羌活湯)의 호흡기 염증 완화효과

  • Bo-In Kwon (Research Institute of Korean Medicine, Sangji University) ;
  • Joo-Hee Kim (Research Institute of Korean Medicine, Sangji University)
  • 권보인 (상지대학교 한의학연구소) ;
  • 김주희 (상지대학교 한의학연구소)
  • Received : 2023.12.03
  • Accepted : 2023.12.17
  • Published : 2023.12.31

Abstract

Objectives : Gumiganghwal-tang and its main components have been used for treatment of cough, headache, joint pain and fever. Using a respiratory inflammatory model, we intend to demonstrate the its anti-inflammatory effect and immune mechanism of Gumiganghwal-tang. Methods : We induced the respiratory inflammation mouse model by papain treatment. Female BALB/C mice (8 weeks old) were divided into three groups as follows: saline control group, papain treatment group (vehicle), papain and Gumiganghwal-tang (200 mg/kg) treatment group (n=4). To verify the anti-inflammatory effect of Gumiganghwal-tang extracts, we measured the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) and nasal lavage fluid (NALF). Additionally, the efficacy of Gumiganghwal-tang extracts on Th2 cell population and alveolar macrophage in lung were analyzed by using flow cytometry. Results : Gumiganghwal-tang extracts administration decreased inflammatory cell infiltration in BALF and NALF, especially of eosinophils. Furthermore, interleukin-5 level was reduced in lung by drug administration. Interestingly, Gumiganghwal-tang extracts treatment also decreased the Th2 cell (CD4+GATA3+) population and increased the alveolar macrophage (CD11b+CD11c+) population in lung. Conclusions : Our findings indicate that Gumiganghwal-tang extracts have anti-inflammatory effects by mediating Th2 cell and alveolar macrophage cell activation.

Keywords

Acknowledgement

본 결과물은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력 기반 지역혁신 사업의 결과입니다(2022RIS-005).

References

  1. Holgate, S.T. Innate and adaptive immune responses in asthma. Nature Medicine. 2012;18:673-683. https://doi.org/10.1038/nm.2731
  2. Pawankar, R. Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ. 2014.
  3. Cates, C.J., Jaeschke, R., Schmidt, S., Ferrer, M. Regular treatment with formoterol and inhaled steroids for chronic asthma: serious adverse events. Cochrane Database Systemic Review. 2013.
  4. Wener, R.R., Bel, E.H. Severe refractory asthma: an update. European Respiratory Review. 2013;22:227-235. https://doi.org/10.1183/09059180.00001913
  5. Slader, C.A., Reddel, H.K., Jenkins, C.R., Armour, C.L., Bosnic-Anticevich, S.Z. Complementary and alternative medicine use in asthma: who is using what?. Respirology. 2006;11:373-387. https://doi.org/10.1111/j.1440-1843.2006.00861.x
  6. Li, X.M. Treatment of asthma and food allergy with herbal intervention from traditional Chinise medicine. Mount Sinai Journal of Medicine: A Journal of Traditional and Personalized Medicine. 2011;78:697-716. https://doi.org/10.1002/msj.20294
  7. Zhang, T., Srivastava, K., Wen, M.C., Yang, N., Cao, J., Busse, P., Brimingham, N., Goldfarb, J., Li, X.M. Pharmacology and immunological actions of a herbal medicine ASHMI on allergic asthma. Phytotherapy Research. 2010;24(7):1047-1055 https://doi.org/10.1002/ptr.3077
  8. Lambrecht, B.N., Hanmmad, H. The immunology of asthma. Nature Immunology. 2015;16:45-56. https://doi.org/10.1038/ni.3049
  9. Kim, H.Y., Dekruyff, R,H., Umetsu, D.T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nature Immunology. 2010;11:577-584. https://doi.org/10.1038/ni.1892
  10. Foster, P.S., Mould, A.W., Yang, M., Mackenzie, J., Mattes, J., Hogan, S.P., Mahalingam, S., Mackenzie, A.N., Rothenberg, M.E., Young, I.G., Matthaei, K.I., Webb, D.C. Elemental signals regulating eosinophil accumulation in the lung Immunological Reviews. 2001;179(1):173-181.
  11. Rosenberg, H.F., Dyer, K.D., Foster, P.S. Eosinophils: changing perspectives in health  and diseases. Nature Reviews Immunology. 2012;13:9-22. https://doi.org/10.1038/nri3341
  12. Isobe, Y., Kato, T., Arita, M. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Frontiers in Immunology. 2012;3:270. https://doi.org/10.3389/fimmu.2012.00270
  13. Kato, M., Suzuki, M., Hayashi, Y., Kimura, H. Role of eosinophils and their clinical significance in allergic inflammation. Experimental Review Clinical Immunology. 2006;2:121-133. https://doi.org/10.1586/1744666X.2.1.121
  14. Uhm, T.G., Kim, B.S., Chung, I.Y. Eosinophil development, regulation of eosinophil-specific genes, and role of eosinophils in the pathogenesis of asthma. Allergy, Asthma Immunology Research. 2012;4:68-79. https://doi.org/10.4168/aair.2012.4.2.68
  15. Kang, D., Kim, J.E. Fine, ultrafine, and yellow dust: emerging health problems in Korea. Journal of Korean Medical Science. 2014;29 (5):621-622. https://doi.org/10.3346/jkms.2014.29.5.621
  16. Kim, H.-S., Kim, D.-S., Yi, S.-M. Relationship between mortality and fine particles during Asian dust, smog-Asian dust, and smog days in Korea. International Journal of Environmental Health Research. 2012;22(6):518-530. https://doi.org/10.1080/09603123.2012.667796
  17. Walford, H.H., Doherty, T.A. Diagnosis and management of eosinophilic asthma: a US perspective. Journal of Asthma and Allergy. 2014;7:53-65. https://doi.org/10.2147/JAA.S39119
  18. Kay, A.B. Allergy and allergic disease. First of two parts. New England Journal of Medicine. 2001;344(1):30-37. https://doi.org/10.1056/NEJM200101043440106
  19. Rose Jr., C.E., Lannigan, J.A., Kim, P., Lee, J.J., Fu, S.M., Sung, S.S. Muring lung  eosinophil activation and chemokine production in allergic airway inflammation. Cell and Molecular Immunology. 2010;7:361-374. https://doi.org/10.1038/cmi.2010.31
  20. Chu, D.K., Jimenez-Saiz, R., Verschoor, C.P., Walker, T.D., Goncharova, S., Llop-Guevara, A., Shen, P., Gordon, M.E., Barra, N.G., Bassett, J.D., Kong, J., Fattouh, R., McCoy, K.D., Bowdish, D.M., Erjefalt, J.S., Pabst, O., Humbles, A.A., Kolbeck, R., Waserman, S., Jordana, M. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. Journal of Experimental Medicine. 2014;211(8):1657-1672. https://doi.org/10.1084/jem.20131800
  21. Lim, H.F., Nair, P. Efficacy and safety of reslizumab in patients with moderate to severe eosinophilic asthma. Expert Review of Respiratory Medicine. 2015;9(2):135-142. https://doi.org/10.1586/17476348.2015.1000867
  22. Saradna, A., Do, D.C., Fu, Q.-L., Gao, P. Macrophage polarization and allergic asthma. Translational Research. 2017;191:1-14. https://doi.org/10.1016/j.trsl.2017.09.002
  23. Jiang, Z., Zhu, L. Update on the role of alternatively activated macrophages in asthma. Journal of Asthma and Allergy. 2016;9:101-107. https://doi.org/10.2147/JAA.S104508
  24. Song, X., Xie, S., Lu, K., Wang, C. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation. 2015;38:483-492. https://doi.org/10.1007/s10753-014-9954-6
  25. Tan, H.Y., Wang, N., Li, S., Hong, M., Wang, X., Feng, Y. The Reactive Oxygen Species in Macrophage Polarization: Reflecting its dual role in progression and treatment of human disease. Oxidative Medicine and Cellular Longevity. 2016;2795090.
  26. Kwon, B.-I., Hong, S,C., Shin, K., Choi, E.-H., Hwang, J.-J., Lee, S.-H. Innate type2 Immuntiy is Associated with Eosinophilic Pleural Effusion in Primary Spontaneous Pneumothorax. American Journal of Respiratory and Critical Care Medicine. 2013;188:577-585. https://doi.org/10.1164/rccm.201302-0295OC
  27. Kwon, B,-I., Kim, T.W., Shin, K., Kim, Y. H., Yuk, C.M., Yuk, J.-M., Shin, D.-M., Jo, E.-K., Lee, C.-H., Lee, S.-H. Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy. 2017;72(2):252-265. https://doi.org/10.1111/all.12944
  28. Shin, K., Kataru, R.P., Park, H.J., Kwon, B.-I., Kim, T.W., Hong, Y.K., Lee, S.-H. Th2 cells and their cytokines regulate formation and function of lymphatic vessels. Nature communications. 2017;DOI:10.1038/ncomms7196.