DOI QR코드

DOI QR Code

Severe Human Rhinovirus Lower Respiratory Tract Infections in Young Children

  • Doo Ri Kim (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kyung-Ran Kim (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hwanhee Park (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Esther Park (Department of Critical Care, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Joongbum Cho (Department of Critical Care, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jihyun Kim (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hee Jae Huh (Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kangmo Ahn (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Nam Yong Lee (Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Yae-Jean Kim (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2023.03.20
  • Accepted : 2023.10.08
  • Published : 2023.12.25

Abstract

Purpose: Human rhinovirus (HRV) infections can result in lower respiratory tract infections (LRTIs). We aimed to investigate the characteristics of severe HRV LRTI in young children. Methods: Medical records were reviewed retrospectively in patients who were hospitalized for HRV LRTIs from 2016 to 2020 at the Samsung Medical Center in Seoul, Korea. Patients aged 90 days or older and younger than 5 years were included. Patients with co-infections with other respiratory pathogens were excluded. Severe HRV LRTI was defined as the following: the need for high-flow oxygenation, mechanical ventilation, or intensive care unit admission. Results: A total of 115 cases were identified. The median age was 17 months (range, 3-56 months) and the median hospital days were 4 days (range, 2-31 days). Of the 115 cases, 18 patients (15.7%) developed severe HRV LRTI. The median age was younger in the severe group compared to the non-severe group (9.5 months vs. 19.0 months, P=0.001). Of 18 patients with severe HRV LRTI, 11 (61.1%) had underlying diseases - chronic lung diseases accounted for the largest proportion (63.6%). Six patients (33.3%) required mechanical ventilation. Of note, 7 previously healthy children were diagnosed with severe HRV LRTI. Of those 7 children, 4 of them were diagnosed with asthma later. When the 115 cases were divided into previously healthy (n=60) and underlying disease (n=55) groups, severe courses of HRV LRTI were observed in 11.7% and 20.0% of children, respectively (P=0.219). Conclusions: HRV can cause severe LRTI even in previously healthy children as well as in children with comorbidities.

목적: 리노바이러스의 감염은 하기도 감염을 일으키기도 한다. 본 연구에서는 리노바이러스에 의한 중증 하기도 감염을 보이는 소아환자의 특성을 알아보고자 하였다. 방법: 2016년부터 2020년까지 삼성서울병원 소아청소년과에 리노바이러스 하기도감염으로 입원한 환자의 의무기록을 후향적으로 분석하였다. 입원 시 연령이 생후90일 이상, 5세 미만인 소아 환자를 대상으로 하였다. 다른 호흡기 병원체와의 동시 감염이 확인된 환자는 제외하였다. 리노바이러스에 의한 중증 하기도감염은 고유량 산소요법 치료가 필요한 경우, 기계 호흡이 필요한 경우 또는 중환자실 입원하는 경우로 정의하였다. 결과: 해당 기간 동안 총 115건의 리노바이러스 하기도 감염 입원이 확인되었다. 연령 중앙값은 17개월 (범위, 3-56개월) 이었으며, 입원 일수 중앙값은 4일 (범위, 2-31일) 이었다. 115 건 중 18건의 입원 (15.7%)은 중증 리노바이러스 하기도 감염 그룹으로 분류되었다. 중증 경과 그룹 환자의 연령 중앙값은 그렇지 않은 그룹에 비해 연령 중앙값이 낮았다 (9.5 개월 vs. 19.0 개월, P=0.001). 18명의 중증 리노바이러스 하기도 감염 그룹 환자 중 11명 (61.1%)는 기저질환을 가지고 있었으며, 만성 폐질환이 가장 많은 비율을 차지하였다 (63.6%). 여섯 명의 환자는 (33.3%) 기계 호흡을 필요로 하였다. 일곱 명의 기저질환이 없는 환자도 중증 리노바이러스 하기도 감염 그룹에 포함되어 있었다. 이들 일곱 명의 환자 중 네 명은 추후에 천식으로 진단되었다. 115건의 입원을 기저질환이 없는 환자군 (n=60)과 기저질환이 있는 환자군 (n=55)으로 나누어 분석하였을 때, 리노바이러스에 의한 중증 하기도 감염을 보이는 비율은 각각 11.7% 와 20.0% 였다 (P=0.219). 결론: 리노바이러스 감염은 중증 하기도감염의 원인이 될 수 있으며, 기저질환자 뿐 아니라 건강한 소아에서도 중증 하기도감염을 일으킬 수 있다.

Keywords

References

  1. Greenberg SB. Respiratory consequences of rhinovirus infection. Arch Intern Med 2003;163:278-84. https://doi.org/10.1001/archinte.163.3.278
  2. Vandini S, Biagi C, Fischer M, Lanari M. Impact of rhinovirus infections in children. Viruses 2019;11:521.
  3. Chu HY, Englund JA, Strelitz B, Lacombe K, Jones C, Follmer K, et al. Rhinovirus disease in children seeking care in a tertiary pediatric emergency department. J Pediatric Infect Dis Soc 2016;5:29-38. https://doi.org/10.1093/jpids/piu099
  4. Peltola V, Jartti T, Putto-Laurila A, Mertsola J, Vainionpaa R, Waris M, et al. Rhinovirus infections in children: a retrospective and prospective hospital-based study. J Med Virol 2009;81:1831-8. https://doi.org/10.1002/jmv.21590
  5. Stobart CC, Nosek JM, Moore ML. Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front Microbiol 2017;8:2412.
  6. Erkkola R, Turunen R, Raisanen K, Waris M, Vuorinen T, Laine M, et al. Rhinovirus C is associated with severe wheezing and febrile respiratory illness in young children. Pediatr Infect Dis J 2020;39:283-6. https://doi.org/10.1097/INF.0000000000002570
  7. Ortega H, Nickle D, Carter L. Rhinovirus and asthma: challenges and opportunities. Rev Med Virol 2021;31:e2193.
  8. Ljubin-Sternak S, Mestrovic T, Ivkovic-Jurekovic I, Kolaric B, Slovic A, Forcic D, et al. The emerging role of rhinoviruses in lower respiratory tract infections in children - clinical and molecular epidemiological study from Croatia, 2017-2019. Front Microbiol 2019;10:2737.
  9. Hartiala M, Lahti E, Forsstrom V, Vuorinen T, Ruuskanen O, Peltola V. Characteristics of hospitalized rhinovirus-associated community-acquired pneumonia in children, Finland, 2003-2014. Front Med (Lausanne) 2019;6:235.
  10. Cox DW, Khoo SK, Zhang G, Lindsay K, Keil AD, Knight G, et al. Rhinovirus is the most common virus and rhinovirus-C is the most common species in paediatric intensive care respiratory admissions. Eur Respir J 2018;52:1800207.
  11. Stone CA Jr, Miller EK. Understanding the association of human rhinovirus with asthma. Clin Vaccine Immunol 2015;23:6-10.
  12. Miller EK, Lu X, Erdman DD, Poehling KA, Zhu Y, Griffin MR, et al. Rhinovirus-associated hospitalizations in young children. J Infect Dis 2007;195:773-81. https://doi.org/10.1086/511821
  13. Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annu Rev Virol 2020;7:83-101. https://doi.org/10.1146/annurev-virology-012420-022445
  14. Kim JH, Kim HY, Lee M, Ahn JG, Baek JY, Kim MY, et al. Respiratory syncytial virus outbreak without influenza in the second year of the coronavirus disease 2019 pandemic: a national sentinel surveillance in Korea, 2021-2022 season. J Korean Med Sci 2022;37:e258.
  15. Park JY, Kim HI, Kim JH, Park S, Hwang YI, Jang SH, et al. Changes in respiratory virus infection trends during the COVID-19 pandemic in South Korea: the effectiveness of public health measures. Korean J Intern Med 2021;36:1157-68. https://doi.org/10.3904/kjim.2021.026
  16. Takashita E, Kawakami C, Momoki T, Saikusa M, Shimizu K, Ozawa H, et al. Increased risk of rhinovirus infection in children during the coronavirus disease-19 pandemic. Influenza Other Respi Viruses 2021;15:488-94. https://doi.org/10.1111/irv.12854
  17. Kim JO, Hodinka RL. Serious respiratory illness associated with rhinovirus infection in a pediatric population. Clin Diagn Virol 1998;10:57-65. https://doi.org/10.1016/S0928-0197(98)00004-X
  18. Kuribayashi M, Otake S, Kamiyoshi N, Naito S, Yamamoto Y, Shirai K, et al. Clinical influence of multiplex polymerase chain reaction routine uses in urgent pediatric admissions. Pediatr Int 2023;65:e15525.
  19. Kim NH, Lee JA, Eun BW, Shin SH, Chung EH, Park KW, et al. Comparison of polymerase chain reaction and the indirect particle agglutination antibody test for the diagnosis of Mycoplasma pneumoniae pneumonia in children during two outbreaks. Pediatr Infect Dis J 2007;26:897-903. https://doi.org/10.1097/INF.0b013e31812e4b81
  20. Halperin SA, Eggleston PA, Hendley JO, Suratt PM, Groschel DH, Gwaltney JM Jr. Pathogenesis of lower respiratory tract symptoms in experimental rhinovirus infection. Am Rev Respir Dis 1983;128:806-10.
  21. Gruteke P, Glas AS, Dierdorp M, Vreede WB, Pilon JW, Bruisten SM. Practical implementation of a multiplex PCR for acute respiratory tract infections in children. J Clin Microbiol 2004;42:5596-603. https://doi.org/10.1128/JCM.42.12.5596-5603.2004
  22. Kim SR, Ki CS, Lee NY. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J Virol Methods 2009;156:111-6. https://doi.org/10.1016/j.jviromet.2008.11.007
  23. Atmar RL. Uncommon(ly considered) manifestations of infection with rhinovirus, agent of the common cold. Clin Infect Dis 2005;41:266-7. https://doi.org/10.1086/430927
  24. Longtin J, Winter AL, Heng D, Marchand-Austin A, Eshaghi A, Patel S, et al. Severe human rhinovirus outbreak associated with fatalities in a long-term care facility in Ontario, Canada. J Am Geriatr Soc 2010;58:2036-8. https://doi.org/10.1111/j.1532-5415.2010.03091.x
  25. Kraft CS, Jacob JT, Sears MH, Burd EM, Caliendo AM, Lyon GM. Severity of human rhinovirus infection in immunocompromised adults is similar to that of 2009 H1N1 influenza. J Clin Microbiol 2012;50:1061-3. https://doi.org/10.1128/JCM.06579-11
  26. Milano F, Campbell AP, Guthrie KA, Kuypers J, Englund JA, Corey L, et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. Blood 2010;115:2088-94. https://doi.org/10.1182/blood-2009-09-244152
  27. Seo S, Waghmare A, Scott EM, Xie H, Kuypers JM, Hackman RC, et al. Human rhinovirus detection in the lower respiratory tract of hematopoietic cell transplant recipients: association with mortality. Haematologica 2017;102:1120-30. https://doi.org/10.3324/haematol.2016.153767
  28. Kim YJ, Waghmare A, Xie H, Holmberg L, Pergam SA, Jerome KR, et al. Respiratory viruses in hematopoietic cell transplant candidates: impact of preexisting lower tract disease on outcomes. Blood Adv 2022;6:5307-16.  https://doi.org/10.1182/bloodadvances.2021004915
  29. Kim K, Song YH, Park JH, Park HK, Kim SY, Jung H, et al. Rhinovirus associated severe respiratory failure in immunocompetent adult patient. Tuberc Respir Dis (Seoul) 2014;77:132-5. https://doi.org/10.4046/trd.2014.77.3.132
  30. Ngu S, Pervaiz S, Avula A, Chalhoub M. Rhinovirus-induced rapidly progressing acute respiratory distress syndrome in an immunocompetent host. Cureus 2019;11:e3997.
  31. McMillan JA, Weiner LB, Higgins AM, Macknight K. Rhinovirus infection associated with serious illness among pediatric patients. Pediatr Infect Dis J 1993;12:321-5. https://doi.org/10.1097/00006454-199304000-00011
  32. Asner SA, Petrich A, Hamid JS, Mertz D, Richardson SE, Smieja M. Clinical severity of rhinovirus/enterovirus compared to other respiratory viruses in children. Influenza Other Respi Viruses 2014;8:436-42. https://doi.org/10.1111/irv.12255
  33. Louie JK, Roy-Burman A, Guardia-Labar L, Boston EJ, Kiang D, Padilla T, et al. Rhinovirus associated with severe lower respiratory tract infections in children. Pediatr Infect Dis J 2009;28:337-9. https://doi.org/10.1097/INF.0b013e31818ffc1b
  34. Ekinci Sert S, Karagol C, Gungor A, Gulhan B. Comparison of clinical, demographic features, and costs in respiratory syncytial virus, rhinovirus, and viral co-infections in children hospitalized with viral infections of the lower respiratory tract. Jpn J Infect Dis 2022;75:164-8. https://doi.org/10.7883/yoken.JJID.2021.328
  35. Iwane MK, Prill MM, Lu X, Miller EK, Edwards KM, Hall CB, et al. Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children. J Infect Dis 2011;204:1702-10. https://doi.org/10.1093/infdis/jir634
  36. Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet 2002;359:831-4. https://doi.org/10.1016/S0140-6736(02)07953-9
  37. Jackson DJ, Gern JE. Rhinovirus infections and their roles in asthma: etiology and exacerbations. J Allergy Clin Immunol Pract 2022;10:673-81. https://doi.org/10.1016/j.jaip.2022.01.006
  38. Su YT, Lin YT, Yang CC, Tsai SS, Wang JY, Huang YL, et al. High correlation between human rhinovirus type C and children with asthma exacerbations in Taiwan. J Microbiol Immunol Infect 2020;53:561-8. https://doi.org/10.1016/j.jmii.2018.12.001
  39. Rajput C, Han M, Ishikawa T, Lei J, Goldsmith AM, Jazaeri S, et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front Immunol 2021;12:649520.
  40. van der Zalm MM, Wilbrink B, van Ewijk BE, Overduin P, Wolfs TF, van der Ent CK. Highly frequent infections with human rhinovirus in healthy young children: a longitudinal cohort study. J Clin Virol 2011;52:317-20.  https://doi.org/10.1016/j.jcv.2011.09.003