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Numerous studies have investigated the cellular prion protein 
(PrPC) since its discovery. These investigations have explained 
that its structure is predominantly composed of alpha helices 
and short beta sheet segments, and when its abnormal scrapie 
isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to 
prion diseases, including Creutzfeldt-Jakob disease in humans 
and bovine spongiform encephalopathy in cattle. Given its 
ubiquitous distribution across a variety of cellular types, the 
PrPC manifests a diverse range of biological functions, including 
cell-cell adhesion, neuroprotection, signalings, and oxidative 
stress response. PrPC is also expressed in immune tissues, and 
its functions in these tissues include the activation of immune 
cells and the formation of secondary lymphoid tissues, such as 
the spleen and lymph nodes. Moreover, high expression of 
PrPC in immune cells plays a crucial role in the pathogenesis of 
prion diseases. In addition, it affects inflammation and the de-
velopment and progression of cancer via various mechanisms. 
In this review, we discuss the studies on the role of PrPC from 
various immunological perspectives. [BMB Reports 2023; 56(12): 
645-650]

INTRODUCTION

The cellular prion protein (PrPC) is predominantly found in the 
brain tissue and neurons, where it is attached to the cell 
membrane (1-3). PrPC is a single polypeptide composed of 208 
amino acids in mice and 209 amino acids in humans (4-6). In 
the human PrPC, there are two N-glycosylation sites located at 
residue 181 and 197. Through Western blotting, diglycosy-
lated (36 kDa), monoglycosylated (33 kDa), and unglycosy-
lated cerebral PrP isoforms (27 kDa) can be distinguished (7, 
8). PrPC exhibits a predominantly alpha-helical structure with a 
flexible N-terminal domain and a globular C-terminal domain. 
The C-terminal region contains three alpha helices and two 

short segments of the beta sheet structure. For its abnormal 
scrapie isoform (PrPSc), PrPC undergoes a conformational change 
that converts alpha helices into beta-sheets (6, 9, 10). This 
conformational alteration is associated with the pathogenicity 
and transmission of prion diseases (3, 11-13). Prion diseases, 
also known as transmissible spongiform encephalopathies, are 
rare and fatal neurodegenerative disorders that are caused by 
the accumulation of abnormally folded PrPSc in the brain of 
humans and animals (14-16). The abnormal PrPSc form acts as 
a template and induces the conversion of PrPC into a dis-
ease-associated form. This results in progressive accumulation 
of PrPSc, which disrupts normal brain function and causes 
neuronal damage (17-19). Based on the specific type and re-
gion of the brain affected, prion diseases manifest with different 
symptoms, including cognitive impairment, memory loss, be-
havioral changes, movement disorders, and severe neurologi-
cal dysfunction (20, 21). Several prion diseases affect humans, 
including Creutzfeldt-Jakob disease (CJD), variant CJD, Gerst-
mann-Sträussler-Scheinker syndrome, and fatal familial insomnia 
(22, 23). Each disease has distinct clinical and pathological 
features.

PrPC plays multifaceted roles in various cellular processes, 
including cell-cell adhesion (24), neuroprotection (25, 26), 
intracellular signaling (27), cell death and survival (28), and 
oxidative stress response (29). In addition to nerve cells, PrPC 
is also expressed in various other cells, especially leukocytes, 
which are a part of the immune system (30). Despite the high 
expression of PrPC in leukocytes, there have been limited 
scientific investigations of its precise role of PrPC.

Here, we provide an overview of the studies investigating 
the role of PrPC in the immune system. Specifically, we discuss 
the expression of PrPC in immune cells and its function in the 
structural formation of secondary lymphoid tissues, such as the 
spleen and lymph nodes. Furthermore, we focused on the 
mechanisms of peripheral PrPSc replication and neuroinvasion 
of PrPSc via the immune system. We also examined the in-
volvement of PrPC in inflammation, cancer development, and 
metastasis.

EXPRESSION OF PrPC ON IMMUNE CELLS

PrPC is widely expressed on cell surfaces at different levels in 
immune cells, such as T lymphocytes (31, 32), natural killer 
(NK) cells (33, 34), macrophages (35), dendritic cells (DCs) 
(36), regulatory T cells (37) and follicular dendritic cells (FDCs) 
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(38). Although the role of PrPC in immune cells is not well 
understood, PrPC expression increases during NK cell differ-
entiation and functional maturation (33, 34). In addition, PrPC 
in human T cells interacts with the transducer protein zeta- 
chain associated protein-70, which plays a critical role in the 
signaling pathway leading to T cell activation (31). Elevated 
levels of PrPC expression have been found to facilitate T 
lymphocyte activation, promote cell proliferation, and enhance 
differentiation through the T cell receptor signaling pathway 
(32). DCs also exhibit upregulation of PrPC expression after 
maturation (36). PrPC also affects the phagocytic capacity of 
macrophages by activating the ERK1/2 and Akt kinases (35). 
Taken together, these studies demonstrate a correlation be-
tween the activation of immune cells and PrPC expression, 
although the exact role of upregulated PrPC remains uncertain.

Regulatory T cells, known for their ability to suppress immune 
responses, express higher levels of PrPC than conventional T 
cells (37). Our recent study showed that PrPC is involved in the 
development and function of regulatory T cells and it will be 
discussed in detail in section ‘Role of regulatory T cells in 
cancer and their relationship with PrPC.’

FDCs are a specialized type of non-hematopoietic immune 
cell found primarily within the B cell area of secondary 
lymphoid tissues and are recognized for their high expression 
of PrPC. During infection with PrPSc, they serve as the initial 
sites of accumulation in the lymphoid tissues before PrPSc 
subsequently spreads to the central nervous system (CNS) (38). 
However, specific ablation of PrPC expression in FDCs using 
Cre-mediated recombination did not affect the normal function 
of FDCs (39). Further studies are required to elucidate the 
functions of PrPC in FDCs. 

INVOLVEMENT OF PrPC IN THE STRUCTURE OF 
SECONDARY LYMPHOID TISSUES

To investigate the role of PrPC in the structure and organization 
of secondary lymphoid tissues, such as the spleen and lymph 
nodes, several studies have been performed using mice la-
cking PrPC (Prnp0/0) and mice infected with the mouse-adapted 
scrapie strain ME7 (40-42). These studies revealed that PrPC 
plays an important role in the formation and maintenance of 
secondary lymphoid tissue structures. Spleen obtained from 
Prnp0/0 and ME7-infected mice showed impaired structures, 
with a lack of segregation between the T and B zones in the 
white pulp region. In both cases, there was no or significant 
reduction in the size of the T-zone. This can be attributed to 
the decreased expression of T-cell homing chemokines CCL19 
and CCL21, which are involved in T-zone formation (43), 
leading to impaired recruitment of CD4 T cells in both mouse 
models (40, 41). Although both Prnp0/0 and ME7-infected 
spleens exhibited impaired T-zone structures, when compared 
to uninfected wild-type mice, the number of lymphoid tissue 
inducer (LTi) cells, which are important for secondary lym-
phoid tissue development (44, 45) decreased in Prnp0/0 spleens 

but remained unchanged in ME7-infected spleens. These results 
suggest that persistent PrPC, without conversion to PrPSc in 
ME7-infected mice likely regulates both the quantity of LTi 
cells and their migration to the spleen.

PATHOGENESIS OF PRION DISEASES VIA IMMUNE 
SYSTEM 

Prion diseases develop when PrPSc infects the host. Infected 
PrPSc continuously converts PrPC to PrPSc, leading to the ac-
cumulation of PrPSc. Ultimately, the accumulation of PrPSc leads 
to the onset of prion diseases (46, 47). PrPSc accumulation 
primarily occurs in the immune system as immune cells ex-
press PrPC (47-49). Following infection, PrPSc circulates through 
the bloodstream and reaches secondary lymphoid tissues such 
as the lymph nodes, tonsils, Peyer’s patches, and spleen. At 
these sites, PrPSc utilizes immune cells to replicate and ac-
cumulate (46, 50). Once sufficient replication and accumula-
tion occur, prion diseases are triggered subsequent to CNS 
infection, initiating the progression of pathological manifesta-
tions. Therefore, PrPSc accumulation in the secondary lymphoid 
tissues is crucial for movement of PrPSc into the CNS.

FDCs found in the B cell area of germinal centers (GCs) in 
secondary lymphoid tissues are critical for capturing naïve 
antigens using FcγRIIB and complement receptors and presen-
ting them to GC B cells (51-53). In response to these antigens, 
B cells receive help from follicular helper T (Tfh) cells, which 
leads to their activation and subsequent differentiation into 
plasma cells (54-56). Due to high PrPC expression levels, FDCs 
accumulate considerable amount of PrPSc upon infection. 
Consequently, FDCs are pivotal in the onset of prion diseases, 
and the spleen serves as the primary site for PrPSc replication 
mediated by FDCs (57-60). In the absence of FDCs, the lack of 
a site for accumulation of PrPSc prevents its accumulation. 
Consequently, neuroinvasion does not occur in the absence of 
PrPSc accumulation (60-62).

Our study showed that ME7-infected mice exhibited in-
creased FDC networks and Tfh cell responses, which persisted 
throughout the progression of prion disease (42). Despite a 
decrease in CD4 T cells in the white pulp, there was an in-
crease in CD4 T cells within GCs, accompanied by higher 
expression levels of Tfh-related genes, such as Bcl6, Il21, 
Cxcr5, Icos, and Pdcd1. Moreover, the ME7-infected spleens 
showed an elevated number of CD4 memory T cells. These 
results suggest that although ME7 infection led to an impaired 
structure in the splenic white pulp, there was an expansion of 
CD4 memory T cells and prolonged Tfh cell responses neces-
sary to support the replication and accumulation of PrPSc 
within GCs.

ROLE OF PrPC IN INFLAMMATION

Several studies have investigated the effects of PrPC on in-
flammatory responses, given its substantial expression in im-
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mune cells and its ability to influence immune cell activation 
and recruitment. These studies revealed that PrPC protects 
organs from inflammatory responses through its immunomodu-
latory function (63-67). High expression of PrPC in immune- 
privileged organs, including the brain, placenta, eyes, testes, 
and uterus, serves as a protective mechanism against inflam-
mation-induced damage to these organs (63). Inflammation 
studies using Prnp-knockout models have been conducted to 
investigate the protective role of PrPC against inflammation 
(68-71). Tsutsui et al. demonstrated that Prnp0/0 mice immun-
ized with myelin oligodendrocyte glycoprotein peptide to 
induce experimental autoimmune encephalomyelitis exhibited 
a more aggressive disease onset characterized by higher levels 
of leukocytic infiltrates and increased expression of pro-in-
flammatory cytokine genes in the brain and spinal cord sug-
gesting the protective role of PrPC against neuroinflammation 
(68). Petit et al. investigated the severity of inflammatory 
bowel disease induced by dextran sodium sulfate and found 
that mice lacking PrPC exhibited more severe symptoms than 
wild-type mice (69). Furthermore, when PrPC was knocked 
down in human enterocytes, there was a decrease in cell-cell 
junctions. The weakening of the intestinal barrier, consisting of 
tight cell-cell junctions, can lead to vulnerability to external 
invasion and infection, potentially resulting in inflammatory 
bowel diseases such as Crohn’s disease and ulcerative colitis. 
Consistent with these findings, patients with Crohn’s disease or 
ulcerative colitis showed decreased levels of PrPC at cell-cell 
junctions in the colonic epithelia (69). Taken together, these 
results revealed that in the absence of PrPC, there was an 
increase in inflammatory responses and a greater extent of 
associated damage. 

In another study, goats lacking PrPC exhibited prolonged 
symptoms in response to lipopolysaccharide-induced (LPS)-in-
duced systemic inflammation (70). In another study using LPS, 
Liu et al. showed that upon LPS injection, wild-type mice 
exhibited elevated levels of pro-inflammatory cytokines in the 
brain and spleen during the acute phase, whereas Prnp0/0 mice 
displayed lower cytokine levels (71). Additionally, Prnp0/0 mice 
showed higher mortality rates in response to LPS-induced sep-
tic shock. These results suggest that PrPC plays a crucial role in 
protecting against LPS injection by modulating the inflamma-
tory response.

ROLE OF PrPC IN CANCER DEVELOPMENT AND 
METASTASIS

Several studies have demonstrated that PrPC stimulates cancer 
cell proliferation through various mechanisms. Elevated levels 
of PrPC expression have been linked to unfavorable prognoses 
and have been observed in various human cancers such as 
gastric carcinoma (72), renal adenocarcinoma (73), colorectal 
cancer (74, 75), breast cancer (76, 77), and melanoma (78). In 
gastric cancer cells, PrPC overexpression activates the phospha-
tidylinositide 3-kinase pathway and upregulation of cyclin D1, 

promoting the G1/S phase transition and consequently facili-
tating cell proliferation (79). Another study reported that PrPC 
influences the G1/S phase transition in several renal adeno-
carcinoma cell lines (80). Consistent with these findings, in the 
absence of PrPC, the expression of cyclins and cyclin-de-
pendent kinases is suppressed, leading to the inhibition of cell 
proliferation in colon cancer (81).

Gil et al. demonstrated that PrPC contributes to the invasion 
and migration of breast cancer cells by regulating matrix me-
talloprotease-9 (MMP-9) (82). They showed that overexpres-
sion of PrPC in the breast cancer cell line MCF-7 leads to an 
increase in MMP-9 expression by enhancing the association of 
NF-κB with the promoter region of the MMP-9 gene and 
activating the ERK signaling pathway. Conversely, when PrPC 
is silenced using siRNA, a notable decrease in ERK activation 
and MMP-9 expression is observed, leading to the suppression 
of cell migration and invasion (82).

Reportedly, PrPC plays a role in both cancer development 
and metastasis, the process by which cancer cells spread from 
the primary tumor to other parts of the body (72, 83, 84). 
Metastatic gastric cancers exhibit high PrPC expression, which 
plays a substantial role in enhancing the adhesive, invasive, 
and metastatic capacities of gastric cancer cell lines (72). Ac-
cording to Pan et al., the N-terminal region of PrPC can acti-
vate the MEK/ERK pathway, ultimately leading to transactiva-
tion of MMP11. This activation enhances the invasive and 
metastatic properties of gastric cancer cells, indicating their 
potential role in promoting metastasis (72). Additionally, the 
overexpression of MMP11 is frequently associated with a more 
aggressive tumor phenotype and resistance to apoptosis (83). 
Wang et al. showed that PrPC is specifically expressed at the 
invasive front of colorectal cancers (CRCs), promoting tumor 
invasion through the acquisition of characteristics associated 
with epithelial-mesenchymal transition (84). Additionally, they 
showed that knockdown of PrPC in an orthotopic xenograft 
model significantly reduced the number of distant metastases, 
supporting the significant role of PrPC in the regulation of CRC 
progression and metastasis.

ROLE OF REGULATORY T CELLS IN CANCER AND 
THEIR RELATIONSHIP WITH PrPC

Research on the role of PrPC in cancer invasion and metastasis 
has revealed its association with regulatory T cells (37, 78). 
Regulatory T cells possess immunosuppressive functions and 
exhibit elevated activity in numerous types of cancers (85, 86). 
An increased number of tumor-infiltrating regulatory T cells 
have been identified, and their increased activity are observed 
in various human cancers, including liver, lung, breast, gastro-
intestinal tract, pancreas, and ovarian cancers (85-87). Our 
recent study showed that when B16F10 melanoma cells were 
injected into Prnp0/0 and PrP-overexpressing (Tga20) mice to 
induce lung metastasis, Tga20 mice reached the terminal stage 
much faster than Prnp0/0 mice as lung metastasis occurred (78). 
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This effect was likely associated with an increased number of 
regulatory T cells. The expression of transforming growth factor- 
beta (TGF-β) and programmed death ligand-1 (PD-L1), which 
play important roles in the differentiation and function of 
regulatory T cells, was upregulated in Tga20 mice compared 
with Prnp0/0 mice. These results suggest that during the in-
vasion and metastasis of cancer cells, PrPC may contribute to 
the development and activation of regulatory T cells by in-
creasing the expression of TGF-β and PD-L1, which enhances 
their functionality. 

CONCLUSION

In almost all cells, PrPC is expressed, participating in diverse 
cellular processes and also found in immune cells, suggesting 
potential roles in the immune system. Based on the research 
findings to date, it has been revealed that PrPC has a protective 
function in inflammatory responses triggered by infections, but 
contributes to the development of cancer through various 
mechanisms, including regulation of cell proliferation, enhance-
ment of adhesive, invasive, and metastatic capacities, and 
boosting regulatory T cell activation. These findings suggest 
that PrPC plays a crucial role in the immune system and has 
substantial implications in the pathogenesis of conditions like 
inflammation and cancer. However, since much of this 
research is based on results of phenomena observed through 
knockout systems, further investigations are required to unveil 
the specific roles of PrPC in individual immune cells, elucidate 
molecular mechanisms, and understand the interactions through 
which PrPC influences the immune system. Future studies 
exploring the precise functions of PrPC in the immune system 
will enable the regulation of the immune system using PrPC, 
which can be applied for the treatment of various diseases.
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