Acknowledgement
This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF2022R1A5A102641311), NRF-2022R1C1C1004100, NRF-2019R1A6A1A10073887, KAIST UP Program, POSCO Science Fellowship of POSCO TJ Park Foundation.
References
- Waterland RA (2006) Epigenetic mechanisms and gastrointestinal development. J Pediatr 149, S137-S142 https://doi.org/10.1016/j.jpeds.2006.06.064
- Gibney ER and Nolan CM (2010) Epigenetics and gene expression. Heredity 105, 4-13 https://doi.org/10.1038/hdy.2010.54
- Kornberg RD and Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294 https://doi.org/10.1016/S0092-8674(00)81958-3
- Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260 https://doi.org/10.1038/38444
- Kouzarides T (2007) Chromatin modifications and their function. Cell 128, 693-705 https://doi.org/10.1016/j.cell.2007.02.005
- Bannister AJ and Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21, 381-395 https://doi.org/10.1038/cr.2011.22
- Quina AS, Buschbeck M and Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72, 1563-1569 https://doi.org/10.1016/j.bcp.2006.06.016
- Moore LD, Le T and Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38 https://doi.org/10.1038/npp.2012.112
- Gillette TG and Hill JA (2015) Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res 116, 1245-1253 https://doi.org/10.1161/CIRCRESAHA.116.303630
- Vermeulen M, Mulder KW, Denissov S et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58-69 https://doi.org/10.1016/j.cell.2007.08.016
- Shi J and Vakoc Christopher R (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54, 728-736 https://doi.org/10.1016/j.molcel.2014.05.016
- Millan-Zambrano G, Burton A, Bannister AJ and Schneider R (2022) Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 23, 563-580 https://doi.org/10.1038/s41576-022-00468-7
- Tamaru H (2010) Confining euchromatin/heterochromatin territory: jumonji crosses the line. Genes Dev 24, 1465-1478 https://doi.org/10.1101/gad.1941010
- Padeken J, Methot SP and Gasser SM (2022) Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 23, 623-640 https://doi.org/10.1038/s41580-022-00483-w
- Gonzalez-Sandoval A, Towbin BD, Kalck V et al (2015) Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans embryos. Cell 163, 1333-1347 https://doi.org/10.1016/j.cell.2015.10.066
- Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293 https://doi.org/10.1126/science.1181369
- Bonev B and Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17, 661-678 https://doi.org/10.1038/nrg.2016.112
- Leidescher S, Ribisel J, Ullrich S et al (2022) Spatial organization of transcribed eukaryotic genes. Nat Cell Biol 24, 327-339 https://doi.org/10.1038/s41556-022-00847-6
- Osborne CS, Chakalova L, Brown KE et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36, 1065-1071 https://doi.org/10.1038/ng1423
- Bickmore WA (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14, 67-84 https://doi.org/10.1146/annurev-genom-091212-153515
- Wang S, Su JH, Beliveau BJ et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598-602 https://doi.org/10.1126/science.aaf8084
- Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380 https://doi.org/10.1038/nature11082
- Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-385 https://doi.org/10.1038/nature11049
- Szabo Q, Bantignies F and Cavalli G (2019) Principles of genome folding into topologically associating domains. Sci Adv 5, eaaw1668
- Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N and Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15, 2038-2049 https://doi.org/10.1016/j.celrep.2016.04.085
- Naumova N, Imakaev M, Fudenberg G et al (2013) Organization of the mitotic chromosome. Science 342, 948-953 https://doi.org/10.1126/science.1236083
- Alipour E and Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40, 11202-11212 https://doi.org/10.1093/nar/gks925
- Schoenfelder S and Fraser P (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20, 437-455 https://doi.org/10.1038/s41576-019-0128-0
- Nora EP, Goloborodko A, Valton AL et al (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930-944 e922
- Nuebler J, Fudenberg G, Imakaev M, Abdennur N and Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci U S A 115, E6697-E6706 https://doi.org/10.1073/pnas.1717730115
- Rao SSP, Huang SC, Glenn St Hilaire B et al (2017) Cohesin loss eliminates all loop domains. Cell 171, 305-320 e324
- Schwarzer W, Abdennur N, Goloborodko A et al (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51-56 https://doi.org/10.1038/nature24281
- Wutz G, Varnai C, Nagasaka K et al (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36, 3573-3599 https://doi.org/10.15252/embj.201798004
- Spracklin G, Abdennur N, Imakaev M et al (2023) Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat Struct & Mol Biol 30, 38-51 https://doi.org/10.1038/s41594-022-00892-7
- Nichols MH and Corces VG (2021) Principles of 3D compartmentalization of the human genome. Cell Rep 35, 109330
- Fortin JP and Hansen KD (2015) Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol 16, 180
- Mourad R and Cuvier O (2015) Predicting the spatial organization of chromosomes using epigenetic data. Genome Biol 16, 182
- Pancaldi V, Carrillo-de-Santa-Pau E, Javierre BM et al (2016) Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Genome Biol 17, 152
- Tolsma TO and Hansen JC (2019) Post-translational modifications and chromatin dynamics. Essays Biochem 63, 89-96 https://doi.org/10.1042/EBC20180067
- Tan ZW, Guarnera E and Berezovsky IN (2019) Exploring chromatin hierarchical organization via Markov State Modelling. PLoS Comput Biol 14, e1006686
- Boettiger AN, Bintu B, Moffitt JR et al (2016) Superresolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418-422 https://doi.org/10.1038/nature16496
- Kimura A and Horikoshi M (2004) Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells 9, 499-508 https://doi.org/10.1111/j.1356-9597.2004.00740.x
- Wang J, Lawry ST, Cohen AL and Jia S (2014) Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 71, 4841-4852 https://doi.org/10.1007/s00018-014-1725-x
- Rao SS, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680 https://doi.org/10.1016/j.cell.2014.11.021
- Gassler J, Brandao HB, Imakaev M et al (2017) A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600-3618 https://doi.org/10.15252/embj.201798083
- Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59-64 https://doi.org/10.1038/nature12593
- Bintu B, Mateo LJ, Su JH et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, 1783-1791 https://doi.org/10.1126/science.aau1783
- Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA and Boettiger AN (2019) Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49-54 https://doi.org/10.1038/s41586-019-1035-4
- Liu M, Lu Y, Yang B et al (2020) Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat Commun 11, 2907
- Montavon T, Shukeir N, Erikson G et al (2021) Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat Commun 12, 4359
- Yan Z, Ji L, Huo X et al (2020) G9a/GLP-sensitivity of H3K9me2 demarcates two types of genomic compartments. Genomics Proteomics Bioinformatics 18, 359-370 https://doi.org/10.1016/j.gpb.2020.08.001
- Feng Y, Wang Y, Wang X et al (2020) Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol 21, 296
- Buitrago D, Labrador M, Arcon JP et al (2021) Impact of DNA methylation on 3D genome structure. Nat Commun 12, 3243
- McLaughlin K, Flyamer IM, Thomson JP et al (2019) DNA Methylation directs polycomb-dependent 3D genome re-organization in naive pluripotency. Cell Rep 29, 1974-1985 e1976
- Wang H, Han M and Qi LS (2021) Engineering 3D genome organization. Nat Rev Genet 22, 343-360 https://doi.org/10.1038/s41576-020-00325-5
- Morgan SL, Mariano NC, Bermudez A et al (2017) Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 8, 15993
- Hao N, Shearwin KE and Dodd IB (2017) Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun 8, 1628
- Deng W, Lee J, Wang H et al (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233-1244 https://doi.org/10.1016/j.cell.2012.03.051
- Kim JH, Rege M, Valeri J et al (2019) LADL: light-activated dynamic looping for endogenous gene expression control. Nat Methods 16, 633-639 https://doi.org/10.1038/s41592-019-0436-5
- Wang H, Xu X, Nguyen CM et al (2018) CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405-1417 e1414
- Lin JL, Ekas H, Deaner M and Alper HS (2019) CRISPR-PIN: modifying gene position in the nucleus via dCas9- mediated tethering. Syn and Sys Biotech 4, 73-78 https://doi.org/10.1016/j.synbio.2019.02.001
- Grewal SI and Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301, 798-802 https://doi.org/10.1126/science.1086887
- Grewal SI and Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399-406 https://doi.org/10.1038/nature05914
- Hojfeldt JW, Hedehus L, Laugesen A et al (2019) Noncore subunits of the PRC2 complex are collectively required for its target-site specificity. Mol Cell 76, 423-436 e423
- Oksuz O, Narendra V, Lee CH et al (2018) Capturing the onset of PRC2-mediated repressive domain formation. Mol Cell 70, 1149-1162 e1145
- Long Y, Hwang T, Gooding AR et al (2020) RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet 52, 931-938 https://doi.org/10.1038/s41588-020-0662-x
- Yu JR, Lee CH, Oksuz O, Stafford JM and Reinberg D (2019) PRC2 is high maintenance. Genes Dev 33, 903-935 https://doi.org/10.1101/gad.325050.119
- Blackledge NP, Rose NR and Klose RJ (2015) Targeting polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 16, 643-649 https://doi.org/10.1038/nrm4067
- Brickner JH (2023) Inheritance of epigenetic transcriptional memory through read-write replication of a histone modification. Ann N Y Acad Sci 1526, 50-58 https://doi.org/10.1111/nyas.15033
- Kikuchi M, Morita S, Wakamori M et al (2023) Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 14, 4103
- Serra-Cardona A, Duan S, Yu C and Zhang Z (2022) H3K4me3 recognition by the COMPASS complex facilitates the restoration of this histone mark following DNA replication. Science Adv 8, eabm6246
- Kraft K, Yost KE, Murphy SE et al (2022) Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proc Natl Acad Sci U S A 119, e2201883119
- Lovkvist C, Mikulski P, Reeck S, Hartley M, Dean C and Howard M (2021) Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic switching and memory. Elife 10, e66454
- Park M, Patel N, Keung AJ and Khalil AS (2019) Engineering epigenetic regulation using synthetic read-write modules. Cell 176, 227-238 e220
- Sadaie M, Iida T, Urano T and Nakayama J (2004) A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 23, 3825-3835 https://doi.org/10.1038/sj.emboj.7600401
- Zhang K, Mosch K, Fischle W and Grewal SIS (2008) Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15, 381-388 https://doi.org/10.1038/nsmb.1406
- Margueron R, Justin N, Ohno K et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762-767 https://doi.org/10.1038/nature08398
- Lee SH, Li Y, Kim H et al (2022) The role of EZH1 and EZH2 in development and cancer. BMB Rep 55, 595-601 https://doi.org/10.5483/BMBRep.2022.55.12.174
- Lee CH, Yu JR, Kumar S et al (2018) Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol Cell 70, 422-434 e426
- Kilic S, Bachmann AL, Bryan LC and Fierz B (2015) Multivalency governs HP1α association dynamics with the silent chromatin state. Nat Commun 6, 7313
- Larson AG, Elnatan D, Keenen MM et al (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236-240 https://doi.org/10.1038/nature22822
- Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X and Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547, 241-245 https://doi.org/10.1038/nature22989
- Grewal SIS (2023) The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 83, 1767-1785 https://doi.org/10.1016/j.molcel.2023.04.020
- Wang L, Gao Y, Zheng X et al (2019) Histone Modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell 76, 646-659 e646
- Gao Y, Han M, Shang S, Wang H and Qi LS (2021) Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR-dCas9. Mol Cell 81, 4287-4299 e4285
- Ngan CY, Wong CH, Tjong H et al (2020) Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat Genet 52, 264-272 https://doi.org/10.1038/s41588-020-0581-x
- Tiwari VK, McGarvey KM, Licchesi JDF et al (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biology 6, e306
- Falk M, Feodorova Y, Naumova N et al (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395-399 https://doi.org/10.1038/s41586-019-1275-3
- Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19, 37-51 https://doi.org/10.1007/s10577-010-9177-0
- Haddad N, Jost D and Vaillant C (2017) Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res 25, 35-50 https://doi.org/10.1007/s10577-016-9548-2
- MacPherson Q, Beltran B and Spakowitz AJ (2018) Bottom-up modeling of chromatin segregation due to epigenetic modifications. Proc Natl Acad Sci U S A 115, 12739-12744 https://doi.org/10.1073/pnas.1812268115
- Dodd IB, Micheelsen MA, Sneppen K and Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129, 813-822 https://doi.org/10.1016/j.cell.2007.02.053
- Erdel F and Greene EC (2016) Generalized nucleation and looping model for epigenetic memory of histone modifications. Proc Natl Acad Sci U S A 113, E4180-E4189 https://doi.org/10.1073/pnas.1605862113
- Michieletto D, Orlandini E and Marenduzzo D (2016) Polymer model with epigenetic recoloring reveals a pathway for the de novo establishment and 3D organization of chromatin domains. Physical Review X 6, 041047
- Jeremy AO, Dino O and Leonid AM (2022) Design principles of 3D epigenetic memory systems. bioRxiv, 2022.2009.2024.509332
- Cheng TH and Gartenberg MR (2000) Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev 14, 452-463 https://doi.org/10.1101/gad.14.4.452
- Ragunathan K, Jih G and Moazed D (2015) Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699
- Laprell F, Finkl K and Muller J (2017) Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85-88 https://doi.org/10.1126/science.aai8266
- Abdulla AZ, Salari H, Tortora MMC, Vaillant C and Jost D (2023) 4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling. Curr Opin Genet Dev 79, 102033
- Abdulla AZ, Vaillant C and Jost D (2022) Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory. Nucleic Acids Res 50, 9083-9104 https://doi.org/10.1093/nar/gkac702
- Wells JN and Feschotte C (2020) A field guide to eukaryotic transposable elements. Annu Rev Genet 54, 539-561 https://doi.org/10.1146/annurev-genet-040620-022145
- Rebollo R, Karimi MM, Bilenky M et al (2011) Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 7, e1002301
- Newar K, Abdulla AZ, Salari H, Fanchon E and Jost D (2022) Dynamical modeling of the H3K27 epigenetic landscape in mouse embryonic stem cells. PLoS Comput Biol 18, e1010450
- Imakaev MV, Fudenberg G and Mirny LA (2015) Modeling chromosomes: beyond pretty pictures. FEBS Lett 589, 3031-3036 https://doi.org/10.1016/j.febslet.2015.09.004
- Bau D and Marti-Renom MA (2012) Genome structure determination via 3C-based data integration by the Integrative Modeling Platform. Methods (San Diego, Calif.) 58, 300-306 https://doi.org/10.1016/j.ymeth.2012.04.004
- Marti-Renom MA and Mirny LA (2011) Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput Biol 7, e1002125
- Tjong H, Li W, Kalhor R et al (2016) Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc Natl Acad Sci U S A 113, E1663-E1672 https://doi.org/10.1073/pnas.1512577113
- Shukron O and Holcman D (2017) Transient chromatin properties revealed by polymer models and stochastic simulations constructed from chromosomal capture data. PLoS Comput Biol 13, e1005469
- Dodero-Rojas E, Mello MF, Brahmachari S, Oliveira Junior AB, Contessoto VG and Onuchic JN (2023) PyMEGABASE: predicting cell-type-specific structural annotations of chromosomes using the epigenome. J Mol Biol 435, 168180
- Xiong K and Ma J (2019) Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat Commun 10, 5069
- Qi Y and Zhang B (2019) Predicting three-dimensional genome organization with chromatin states. PLoS Comput Biol 15, e1007024
- Di Pierro M, Cheng RR, Lieberman Aiden E, Wolynes PG and Onuchic JN (2017) De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc Natl Acad Sci U S A 114, 12126-12131 https://doi.org/10.1073/pnas.1714980114
- Ashoor H, Chen X, Rosikiewicz W et al (2020) Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data. Nat Commun 11, 1173
- Zheng S, Thakkar N, Harris HL et al (2022) Predicting A/B compartments from histone modifications using deep learning. bioRxiv, 2022.2004.2019.488754 2022.2004.2019.488754
- Luo Y, Hitz BC, Gabdank I et al (2020) New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res 48, D882-d889 https://doi.org/10.1093/nar/gkz1062
- Di Pierro M, Zhang B, Aiden EL, Wolynes PG and Onuchic JN (2016) Transferable model for chromosome architecture. Proc Natl Acad Sci U S A 113, 12168-12173 https://doi.org/10.1073/pnas.1613607113
- Contessoto VG, Cheng RR and Onuchic JN (2022) Uncovering the statistical physics of 3D chromosomal organization using data-driven modeling. Curr Opin Struct Biol 75, 102418