DOI QR코드

DOI QR Code

First Report of Pectobacterium brasiliense Causing Bitter Melon Soft Rot Disease in Korea

  • Kyoung-Taek Park (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Leonid N. Ten (Institute of Plant Medicine, Kyungpook National University) ;
  • Soo-Min Hong (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Chang-Gi Back (Department of Environmental Horticulture and Landscape Architecture, Environmental Horticulture, Dankook University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2023.11.02
  • Accepted : 2023.11.23
  • Published : 2023.12.31

Abstract

In the Goesan region, located in Chungcheongbuk-do, Korea, a significant outbreak of soft rot infections was documented in August 2021, affecting fruits of Momordica charantia, commonly known as bitter melon or bitter gourd. The symptoms included a noticeable transition to yellowing in the affected fruits, eventually leading to their collapse. The bacterial strain KNUB-09-21 was isolated from the diseased fruits. Molecular analysis, using the sequences of the 16S rRNA region and three housekeeping genes (dnaX, recA, and leuS), along with the results of compound utilization in the API ID 32 GN system, provide strong evidence for the identification of the isolate KNUB-09-21 as Pectobacterium brasiliense. The pathogenicity of strain KNUB-09-21 on M. charantia was confirmed through a controlled inoculation test. Within two days, inoculated fruits displayed soft rot symptoms closely resembling those observed in naturally affected fruits. This is the first report of soft rot on M. charantia in Korea.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader Program funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (no. 321001-03).

References

  1. Adeolu, M., Alnajar, S., Naushad, S. and Gupta, R. S. 2016. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 66: 5575-5599. https://doi.org/10.1099/ijsem.0.001485
  2. Appy, M. P., Vitor, L., Macedo, B. I. B., Ferreira-Tonin, M., Harakava, R. and Lanza, S. A. D. 2023. First report of Pectobacterium brasiliense causing soft rot on Chicory (Cichorium intybus subsp. intybus) in Brazil. Plant Dis. 107: 2214. https://doi.org/10.1094/PDIS-08-22-1988-PDN
  3. Barras, F., van Gijsegem, F. and Chatterjee, A. K. 1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32: 201-234. https://doi.org/10.1146/annurev.py.32.090194.001221
  4. Choi, I. Y., Kim, J. H., Lee, W. H., Park, J. H. and Shon, H. D. 2015. First report of black rot caused by Phoma cucurbitacearum on Momordica charantia in Korea. Plant Dis. 99: 727. https://doi.org/10.1094/PDIS-10-14-1035-PDN
  5. Choi, O. and Kim, J. 2013. Pectobacterium carotovorum subsp. brasiliense causing soft rot on paprika in Korea. J. Phytopathol. 161: 125-127. https://doi.org/10.1111/jph.12022
  6. Czajkowski, R., Perombelon, M. C. M., van Veen, J. A. and van der Wolf, J. M. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol. 60: 999-1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x
  7. Duarte, V., de Boer, S. H., Ward, L. J. and de Oliveira, A. M. R. 2004. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 96: 535-545. https://doi.org/10.1111/j.1365-2672.2004.02173.x
  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  9. Helias, V., Hamon, P., Huchet, E., Wolf, J. V. D. and Andrivon, D. 2012. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 61: 339-345. https://doi.org/10.1111/j.1365-3059.2011.02508.x
  10. Hong, S.-M., Park, K.-T., Ten, L. N., Back, C.-G., Kang, I.-K., Lee, S.-Y. et al. 2023a. First report of soft rot caused by Pectobacterium brasiliense on cucumber in Korea. Res. Plant Dis. 9: 304-309. https://doi.org/10.5423/RPD.2023.29.3.304
  11. Hong, S.-M., Ten, L. N., Park, K.-T., Back, C.-G., Waleron, M., Kang, I.-K. et al. 2023b. Pectobacterium jejuense sp. nov. isolated from cucumber stem tissue. Curr. Microbiol. 80: 308. https://doi.org/10.1007/s00284-023-03419-5
  12. Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W. and Reverchon, S. 1996. Regulation of pectinolysis in Erwinia chrysanthemi. Annu. Rev. Microbiol. 50: 213-257. https://doi.org/10.1146/annurev.micro.50.1.213
  13. Hugouvieux-Cotte-Pattat, N., Condemine, G. and Shevchik, V. E. 2014. Bacterial pectate lyases, structural and functional diversity. Environ. Microbiol. Rep. 6: 427-440. https://doi.org/10.1111/1758-2229.12166
  14. Jeong, U. S., Kim, S. and Chae, Y.-W. 2020. Analysis on the cultivation trends and main producing areas of subtropical crops in Korea. J. Korea Acad.-Ind. Coop. Soc. 21: 524-535.
  15. Jin, Y. J., Jo, D., Kwon, S.-W., Jee, S., Kim, J.-S., Raman, J. et al. 2022. A new approach using the SYBR green-based real-time PCR method for detection of soft rot Pectobacterium odoriferum associated with kimchi cabbage. Plant Pathol. J. 38: 656-664. https://doi.org/10.5423/PPJ.OA.09.2022.0138
  16. Kim, J.-H., Kim, J., Choi, I.-Y., Cheong, S.-S., Uhm, M.-J. and Lee, W. H. 2015. First report of anthracnose on bitter gourd caused by Colletotrichum gloeosporioides in Korea. Res. Plant Dis. 21: 32-35. https://doi.org/10.5423/RPD.2015.21.1.032
  17. Koh, Y. J., Kim, G. H., Lee, Y. S., Sohn, S. H., Koh, H. S., Kwon, S. et al. 2012. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis. N. Z. J. Crop Hortic. Sci. 40: 269-279. https://doi.org/10.1080/01140671.2012.707129
  18. Kubo, H., Kanehashi, K., Shinohara, H., Negishi, H., Matsuyama, N. and Suyama, K. 2009. Bacterial soft rot, a new disease of balsam pear (Momordica charantia L.) caused by Erwinia carotovora subsp. carotovora. Jpn. J. Phytopathol. 75: 173-175. https://doi.org/10.3186/jjphytopath.75.173
  19. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  20. Kwon, J.-H. and Jee, H.-J. 2005. Rhizopus soft rot on Momordica charantia caused by Rhizopus stolonifer in Korea. Res. Plant Dis. 11: 204-207. (In Korean) https://doi.org/10.5423/RPD.2005.11.2.204
  21. Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J. et al. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97: 1150-1163. https://doi.org/10.1094/PHYTO-97-9-1150
  22. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P. et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  23. Maung, C. E. H., Choub, V., Cho, J.-Y. and Kim, K. Y. 2022. Control of the bacterial soft rot pathogen, Pectobacterium carotovorum by Bacillus velezensis CE 100 in cucumber. Microb. Pathog. 173: 105807. https://doi.org/10.1016/j.micpath.2022.105807
  24. Nabhan, S., de Boer, S. H., Maiss, E. and Wydra, K. 2012. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J. Appl. Microbiol. 113: 904-913. https://doi.org/10.1111/j.1365-2672.2012.05383.x
  25. Ozturk, M. and Umar, A. R. 2022. Occurrence, identification, and host range of Pectobacterium brasiliense causing soft rot on seed potato tubers in Turkey. J. Plant Dis. Prot. 130: 1-12. https://doi.org/10.1007/s41348-022-00675-8
  26. Park, K.-T., Hong, S.-M., Back, C.-G., Kim, S. Y., Lee, S.-Y., Kang, I.-K. et al. 2022. First report of Pectobacterium brasiliense causing soft rot on graft cactus in Korea. Res. Plant Dis. 28: 172-178. https://doi.org/10.5423/RPD.2022.28.3.172
  27. Park, K.-T., Ten, L. N., Back, C.-G., Hong, S.-M., Lee, S.-Y., Han, J.-S. et al. 2023. First report of melon soft rot disease caused by Pectobacterium brasiliense in Korea. Res. Plant Dis. 29: 310-315. https://doi.org/10.5423/RPD.2023.29.3.310
  28. Perombelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51: 1-12. https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.x
  29. Portier, P., Pedron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C. et al. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69: 3207-3216. https://doi.org/10.1099/ijsem.0.003611
  30. Slawiak, M., van Beckhoven, J. R. C. M., Speksnijder, A. G. C. L., Czajkowski, R., Grabe, G. and van der Wolf, J. M. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125: 245-261. https://doi.org/10.1007/s10658-009-9479-2
  31. Waleron, M., Waleron, K., Podhajska, A. J. and Lojkowska, E. 2002. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148: 583-595. https://doi.org/10.1099/00221287-148-2-583
  32. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  33. Wu, Y.-M., Wang, L.-H. and Chu, C.-C. 2023. First report of Dickeya dadantii causing bacterial soft rot of Thaumatophyllum bipinnatifidum in Taiwan. Plant Dis. 107: 552. https://doi.org/10.1094/PDIS-04-22-0924-PDN