DOI QR코드

DOI QR Code

Long-term drought modifies carbon allocation and abscisic acid levels in five forest tree species

  • Umashankar Chandrasekaran (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kunhyo Kim (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Siyeon Byeon (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Woojin Huh (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Ah Reum Han (Division of Basic Research, National Institute of Ecology) ;
  • Young-Sang Lee (Division of Basic Research, National Institute of Ecology) ;
  • Hyun Seok Kim (Department of Agriculture, Forestry and Bioresources, Seoul National University)
  • Received : 2023.10.20
  • Accepted : 2023.11.15
  • Published : 2023.12.31

Abstract

Background: This study analyzed the drought responses of five forest tree species grown in Korean peninsula, Korean fir Abies koreana (Ak), eastern white pine Pinus strobus (Ps), keyaki Zelkova serrata (Zs), tulip tree Liriodendron tulipifera (Lt), and Japanese elm Ulmus japonica (Uj). Physiological (chlorophyll, root collar diameter [RCD]) and biochemical responses (non-structural carbohydrates, proline, lipid peroxidase and abscisic acid [ABA]) of the plants grown under mild (MD) and severe drought (SD) were compared. Results: In this study, three soil moisture regimes: control (100% precipitation), MD (60% reduction in precipitation) and SD (20% reduction in precipitation) were applied. Soil moisture content showed high water content in control site compared to MD and SD. A decline in RCD was found for Korean fir, keyaki, and tulip plants, with eastern white pine and Japanese elm showing no significant decline to the prolonged drought exposure (both MD and SD). Total chlorophyll showed a significant decline in Korean fir and tulip, with the sugar levels indicating a significant increase in Korean fir and keyaki species under SD compared to control plants. Non-significant decline in sugar level was noted for eastern white pine and Japanese elm. High accumulation of ABA, malondealdehyde and proline was noted in Korean fir, tulip, and keyaki under SD compared to control. Signs of tree mortality was only observed in Korean fir under MD (38%) and SD (43%). Conclusions: The observed findings indicate the drought responses of five tree species. The majority of the morpho-physiological (especially mortality) and biochemical variables assessed in our study indicate superior long-term drought resistance of Ps and Uj compared to the highly sensitive Ak, and moderately sensitive Lt and Zs. The results provided will help species selection for afforestation programs and establishment of sustainable forests, especially of drought-tolerant species, under increased frequency and intensity of spring and summer droughts.

Keywords

Acknowledgement

This work was jointly supported by a grant from National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE), Republic of Korea (NIE-B-2021;2022-02) and basic science research program through National Research Foundation (NRF) funded by the Ministry of Education (2021R111A2044159), Republic of Korea.

References

  1. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1-15. https://doi.org/10.1104/pp.24.1.1. 
  2. Bhusal N, Lee M, Lee H, Adhikari A, Han AR, Han A, et al. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci Total Environ. 2021;779:146466. https://doi.org/10.1016/j.scitotenv.2021.146466. 
  3. Brodribb TJ, McAdam SA. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiol. 2013;162(3):1370-7. https://doi.org/10.1104/pp.113.217877. 
  4. Buckley TN. How do stomata respond to water status? New Phytol. 2019;224(1):21-36. https://doi.org/10.1111/nph.15899. 
  5. Camison A, Angela Martin M, Javier Dorado F, Moreno G, Solla A. Changes in carbohydrates induced by drought and waterlogging in Castanea sativa. Trees. 2020;34:579-91. https://doi.org/10.1007/s00468-019-01939-x. 
  6. Carvalho V, Gaspar M, Nievola C. Short-term drought triggers defence mechanisms faster than ABA accumulation in the epiphytic bromeliad Acanthostachys strobilacea. Plant Physiol Biochem. 2021;160:62-72. https://doi.org/10.1016/j.plaphy.2020.12.030. 
  7. Choat B, Brodribb TJ, Brodersen CR, Duursma RA, Lopez R, Medlyn BE. Triggers of tree mortality under drought. Nature. 2018;558(7711):531-9. https://doi.org/10.1038/s41586-018-0240-x. 
  8. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491(7426):752-5. https://doi.org/10.1038/nature11688. 
  9. Fang O, Zhang QB. Tree resilience to drought increases in the Tibetan Plateau. Glob Chang Biol. 2019;25(1):245-53. https://doi.org/10.1111/gcb.14470. 
  10. Fichman Y, Gerdes SY, Kovacs H, Szabados L, Zilberstein A, Csonka LN. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc. 2015;90(4):1065-99. https://doi.org/10.1111/brv.12146. 
  11. Forlani G, Funck D. A specific and sensitive enzymatic assay for the quantitation of L-proline. Front Plant Sci. 2020;11:582026. https://doi.org/10.3389/fpls.2020.582026. 
  12. Galmes J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007;175(1):81-93. https://doi.org/10.1111/j.1469-8137.2007.02087.x. Erratum in: New Phytol. 2007;175(4):792. 
  13. Granda E, Camarero JJ. Drought reduces growth and stimulates sugar accumulation: new evidence of environmentally driven non-structural carbohydrate use. Tree Physiol. 2017;37(8):997-1000. https://doi.org/10.1093/treephys/tpx097. 
  14. Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. Impact of drought on soluble sugars and free proline content in selected Arabidopsis Mutants. Biology (Basel). 2020;9(11):367. https://doi.org/10.3390/biology9110367. 
  15. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11):1456-66. https://doi.org/10.4161/psb.21949. 
  16. Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem. 2002; 40(6-8):691-6. https://doi.org/10.1016/S0981-9428(02)01410-9. 
  17. Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 2010;154(1):357-72. https://doi.org/10.1104/pp.110.157008. 
  18. Janku M, Luhova L, Petrivalsky M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants (Basel). 2019;8(4):105. https://doi.org/10.3390/antiox8040105. 
  19. Jin GB, Lee JW, Yun HJ, Lee BS, Park KH, inventor. Korea Meteorological Administration, assignee. Weather information reception and output device. US patent application 12/631,242. 2009 Dec 4. 
  20. Jing M, Zhu L, Liu S, Cao Y, Zhu Y, Yan W. Warming-induced drought leads to tree growth decline in subtropics: evidence from tree rings in central China. Front Plant Sci. 2022;13:964400. https://doi.org/10.3389/fpls.2022.964400. 
  21. Kaur H, Manna M, Thakur T, Gautam V, Salvi P. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol Plant. 2021;171(4):833-48. https://doi.org/10.1111/ppl.13364. 
  22. Khaleghi A, Naderi R, Brunetti C, Maserti BE, Salami SA, Babalar M. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci Rep. 2019;9(1):19250. https://doi.org/10.1038/s41598-019-55889-y. 
  23. Kim DH, Son S, Jung JY, Lee JC, Kim PG. Photosynthetic characteristics and chlorophyll content of Cypripedium japonicum in its natural habitat. For Sci Technol. 2022;18(4):160-71. https://doi.org/10.1080/21580103.2022.2120544. 
  24. Kim DJ, Kang D, Park JH, Kim JH, Kim Y. Changes in the spatiotemporal patterns of precipitation due to climate change. Korean J Agric For Meteorol. 2021;23(4):424-33. https://doi.org/10.5532/KJAFM.2021.23.4.424. 
  25. Kono Y, Ishida A, Saiki ST, Yoshimura K, Dannoura M, Yazaki K, et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun Biol. 2019;2:8. https://doi.org/10.1038/s42003-018-0256-7. 
  26. Lee KC, Kweon H, Sung JW, Kim YS, Song YG, Cha S, et al. Physiological response analysis for the diagnosis of drought and waterlogging damage in Prunus yedoensis. For Sci Technol. 2022a;18(1):14-25. https://doi.org/10.1080/21580103.2022.2035829. 
  27. Lee ST, Chung SH, Kim C. Carbon stocks in tree biomass and soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. J Korean Soc For Sci. 2022b;111(3):365-73. https://doi.org/10.14578/jkfs.2022.111.3.365. 
  28. Li MH, Jiang Y, Wang A, Li X, Zhu W, Yan CF, et al. Active summer carbon storage for winter persistence in trees at the cold alpine treeline. Tree Physiol. 2018;38(9):1345-55. https://doi.org/10.1093/treephys/tpy020. 
  29. Li Y, Xu Y, Chen Y, Ling L, Jiang Y, Duan H, et al. Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Glob Ecol Conserv. 2020;24:e01269. https://doi.org/10.1016/j.gecco.2020.e01269. 
  30. Liu H, Li X, Xiao J, Wang S. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods. 2012;8(1):2. https://doi.org/10.1186/1746-4811-8-2. 
  31. Lyu L, Zhang QB, Pellatt MG, Buntgen U, Li MH, Cherubini P. Drought limitation on tree growth at the Northern Hemisphere's highest tree line. Dendrochronologia. 2019;53:40-7. https://doi.org/10.1016/j.dendro.2018.11.006. 
  32. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178(4):719-39. https://doi.org/10.1111/j.1469-8137.2008.02436.x. 
  33. Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, et al. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon. 2019;5(12):e02952. https://doi.org/10.1016/j.heliyon.2019.e02952. 
  34. Morales M, Munne-Bosch S. Malondialdehyde: facts and artifacts. Plant Physiol. 2019;180(3):1246-50. https://doi.org/10.1104/pp.19.00405. 
  35. Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, et al. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int J Mol Sci. 2022;23(3):1084. https://doi.org/10.3390/ijms23031084. 
  36. Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, et al. Assessment of proline function in higher plants under extreme temperatures. Plant Biol (Stuttg). 2023;25(3):379-95. https://doi.org/10.1111/plb.13510. 
  37. Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L, et al. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol. 2014;164(4):1677-96. https://doi.org/10.1104/pp.113.229062. 
  38. Signori-Muller C, Oliveira RS, Barros FV, Tavares JV, Gilpin M, Diniz FC, et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat Commun. 2021;12(1):2310. https://doi.org/10.1038/s41467-021-22378-8. 
  39. Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol. 2012;15(3):282-92. https://doi.org/10.1016/j.pbi.2012.03.016. 
  40. Tong X, Mu Y, Zhang J, Meng P, Li J. Water stress controls on carbon flux and water use efficiency in a warm-temperate mixed plantation. J Hydrol. 2019;571:669-78. https://doi.org/10.1016/j.jhydrol.2019.02.014. 
  41. Vitale L, Arena C, Carillo P, Di Tommasi P, Mesolella B, Nacca F, et al. Gas exchange and leaf metabolism of irrigated maize at different growth stages. Plant Biosyst. 2011;145(2):485-94. https://doi.org/10.1080/11263504.2011.562373. 
  42. Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, et al. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open. 2018;7(11):bio035279. https://doi.org/10.1242/bio.035279. 
  43. Zarattini M, Forlani G. Toward unveiling the mechanisms for transcriptional regulation of proline biosynthesis in the plant cell response to biotic and abiotic stress conditions. Front Plant Sci. 2017;8:927. https://doi.org/10.3389/fpls.2017.00927. 
  44. Zhang A, Liu M, Gu W, Chen Z, Gu Y, Pei L, et al. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea. BMC Plant Biol. 2021a;21(1):293. https://doi.org/10.1186/s12870-021-03048-9. 
  45. Zhang Y, Luan Q, Jiang J, Li Y. Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Front Plant Sci. 2021b;12:735275. https://doi.org/10.3389/fpls.2021.735275.