Acknowledgement
This work was jointly supported by a grant from National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE), Republic of Korea (NIE-B-2021;2022-02) and basic science research program through National Research Foundation (NRF) funded by the Ministry of Education (2021R111A2044159), Republic of Korea.
References
- Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1-15. https://doi.org/10.1104/pp.24.1.1.
- Bhusal N, Lee M, Lee H, Adhikari A, Han AR, Han A, et al. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci Total Environ. 2021;779:146466. https://doi.org/10.1016/j.scitotenv.2021.146466.
- Brodribb TJ, McAdam SA. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiol. 2013;162(3):1370-7. https://doi.org/10.1104/pp.113.217877.
- Buckley TN. How do stomata respond to water status? New Phytol. 2019;224(1):21-36. https://doi.org/10.1111/nph.15899.
- Camison A, Angela Martin M, Javier Dorado F, Moreno G, Solla A. Changes in carbohydrates induced by drought and waterlogging in Castanea sativa. Trees. 2020;34:579-91. https://doi.org/10.1007/s00468-019-01939-x.
- Carvalho V, Gaspar M, Nievola C. Short-term drought triggers defence mechanisms faster than ABA accumulation in the epiphytic bromeliad Acanthostachys strobilacea. Plant Physiol Biochem. 2021;160:62-72. https://doi.org/10.1016/j.plaphy.2020.12.030.
- Choat B, Brodribb TJ, Brodersen CR, Duursma RA, Lopez R, Medlyn BE. Triggers of tree mortality under drought. Nature. 2018;558(7711):531-9. https://doi.org/10.1038/s41586-018-0240-x.
- Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491(7426):752-5. https://doi.org/10.1038/nature11688.
- Fang O, Zhang QB. Tree resilience to drought increases in the Tibetan Plateau. Glob Chang Biol. 2019;25(1):245-53. https://doi.org/10.1111/gcb.14470.
- Fichman Y, Gerdes SY, Kovacs H, Szabados L, Zilberstein A, Csonka LN. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc. 2015;90(4):1065-99. https://doi.org/10.1111/brv.12146.
- Forlani G, Funck D. A specific and sensitive enzymatic assay for the quantitation of L-proline. Front Plant Sci. 2020;11:582026. https://doi.org/10.3389/fpls.2020.582026.
- Galmes J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007;175(1):81-93. https://doi.org/10.1111/j.1469-8137.2007.02087.x. Erratum in: New Phytol. 2007;175(4):792.
- Granda E, Camarero JJ. Drought reduces growth and stimulates sugar accumulation: new evidence of environmentally driven non-structural carbohydrate use. Tree Physiol. 2017;37(8):997-1000. https://doi.org/10.1093/treephys/tpx097.
- Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. Impact of drought on soluble sugars and free proline content in selected Arabidopsis Mutants. Biology (Basel). 2020;9(11):367. https://doi.org/10.3390/biology9110367.
- Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11):1456-66. https://doi.org/10.4161/psb.21949.
- Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem. 2002; 40(6-8):691-6. https://doi.org/10.1016/S0981-9428(02)01410-9.
- Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 2010;154(1):357-72. https://doi.org/10.1104/pp.110.157008.
- Janku M, Luhova L, Petrivalsky M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants (Basel). 2019;8(4):105. https://doi.org/10.3390/antiox8040105.
- Jin GB, Lee JW, Yun HJ, Lee BS, Park KH, inventor. Korea Meteorological Administration, assignee. Weather information reception and output device. US patent application 12/631,242. 2009 Dec 4.
- Jing M, Zhu L, Liu S, Cao Y, Zhu Y, Yan W. Warming-induced drought leads to tree growth decline in subtropics: evidence from tree rings in central China. Front Plant Sci. 2022;13:964400. https://doi.org/10.3389/fpls.2022.964400.
- Kaur H, Manna M, Thakur T, Gautam V, Salvi P. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol Plant. 2021;171(4):833-48. https://doi.org/10.1111/ppl.13364.
- Khaleghi A, Naderi R, Brunetti C, Maserti BE, Salami SA, Babalar M. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci Rep. 2019;9(1):19250. https://doi.org/10.1038/s41598-019-55889-y.
- Kim DH, Son S, Jung JY, Lee JC, Kim PG. Photosynthetic characteristics and chlorophyll content of Cypripedium japonicum in its natural habitat. For Sci Technol. 2022;18(4):160-71. https://doi.org/10.1080/21580103.2022.2120544.
- Kim DJ, Kang D, Park JH, Kim JH, Kim Y. Changes in the spatiotemporal patterns of precipitation due to climate change. Korean J Agric For Meteorol. 2021;23(4):424-33. https://doi.org/10.5532/KJAFM.2021.23.4.424.
- Kono Y, Ishida A, Saiki ST, Yoshimura K, Dannoura M, Yazaki K, et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun Biol. 2019;2:8. https://doi.org/10.1038/s42003-018-0256-7.
- Lee KC, Kweon H, Sung JW, Kim YS, Song YG, Cha S, et al. Physiological response analysis for the diagnosis of drought and waterlogging damage in Prunus yedoensis. For Sci Technol. 2022a;18(1):14-25. https://doi.org/10.1080/21580103.2022.2035829.
- Lee ST, Chung SH, Kim C. Carbon stocks in tree biomass and soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. J Korean Soc For Sci. 2022b;111(3):365-73. https://doi.org/10.14578/jkfs.2022.111.3.365.
- Li MH, Jiang Y, Wang A, Li X, Zhu W, Yan CF, et al. Active summer carbon storage for winter persistence in trees at the cold alpine treeline. Tree Physiol. 2018;38(9):1345-55. https://doi.org/10.1093/treephys/tpy020.
- Li Y, Xu Y, Chen Y, Ling L, Jiang Y, Duan H, et al. Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Glob Ecol Conserv. 2020;24:e01269. https://doi.org/10.1016/j.gecco.2020.e01269.
- Liu H, Li X, Xiao J, Wang S. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods. 2012;8(1):2. https://doi.org/10.1186/1746-4811-8-2.
- Lyu L, Zhang QB, Pellatt MG, Buntgen U, Li MH, Cherubini P. Drought limitation on tree growth at the Northern Hemisphere's highest tree line. Dendrochronologia. 2019;53:40-7. https://doi.org/10.1016/j.dendro.2018.11.006.
- McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178(4):719-39. https://doi.org/10.1111/j.1469-8137.2008.02436.x.
- Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, et al. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon. 2019;5(12):e02952. https://doi.org/10.1016/j.heliyon.2019.e02952.
- Morales M, Munne-Bosch S. Malondialdehyde: facts and artifacts. Plant Physiol. 2019;180(3):1246-50. https://doi.org/10.1104/pp.19.00405.
- Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, et al. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int J Mol Sci. 2022;23(3):1084. https://doi.org/10.3390/ijms23031084.
- Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, et al. Assessment of proline function in higher plants under extreme temperatures. Plant Biol (Stuttg). 2023;25(3):379-95. https://doi.org/10.1111/plb.13510.
- Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L, et al. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol. 2014;164(4):1677-96. https://doi.org/10.1104/pp.113.229062.
- Signori-Muller C, Oliveira RS, Barros FV, Tavares JV, Gilpin M, Diniz FC, et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat Commun. 2021;12(1):2310. https://doi.org/10.1038/s41467-021-22378-8.
- Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol. 2012;15(3):282-92. https://doi.org/10.1016/j.pbi.2012.03.016.
- Tong X, Mu Y, Zhang J, Meng P, Li J. Water stress controls on carbon flux and water use efficiency in a warm-temperate mixed plantation. J Hydrol. 2019;571:669-78. https://doi.org/10.1016/j.jhydrol.2019.02.014.
- Vitale L, Arena C, Carillo P, Di Tommasi P, Mesolella B, Nacca F, et al. Gas exchange and leaf metabolism of irrigated maize at different growth stages. Plant Biosyst. 2011;145(2):485-94. https://doi.org/10.1080/11263504.2011.562373.
- Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, et al. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open. 2018;7(11):bio035279. https://doi.org/10.1242/bio.035279.
- Zarattini M, Forlani G. Toward unveiling the mechanisms for transcriptional regulation of proline biosynthesis in the plant cell response to biotic and abiotic stress conditions. Front Plant Sci. 2017;8:927. https://doi.org/10.3389/fpls.2017.00927.
- Zhang A, Liu M, Gu W, Chen Z, Gu Y, Pei L, et al. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea. BMC Plant Biol. 2021a;21(1):293. https://doi.org/10.1186/s12870-021-03048-9.
- Zhang Y, Luan Q, Jiang J, Li Y. Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Front Plant Sci. 2021b;12:735275. https://doi.org/10.3389/fpls.2021.735275.