DOI QR코드

DOI QR Code

Insecticide resistance monitoring in Korean local populations of diamondback moth (Plutella xylostella) (I)

  • Hee-Ji Kim (Institute of Agricultural Science, Chungnam National University) ;
  • Hyun Ko (Kyung Nong Co., R&D Center) ;
  • Young-Nam Youn (Institute of Agricultural Science, Chungnam National University)
  • Received : 2023.10.27
  • Accepted : 2023.11.17
  • Published : 2023.12.01

Abstract

Various chemical pesticides are used to control diamondback moths, Plutella xylostella, which are agricultural pests that occur in cruciferous crops worldwide and cause economic losses. However, due to pesticide misuse, resistance to P. xylostella is consistently reported domestically and internationally. Therefore, we aimed to monitor and map regional resistance to devise efficient and economical control methods for P. xylostella in Korea. This study selected eight highly used insecticides among those registered against P. xylostella. P. xylostella were collected from three cities in the Gyeonggi and Yeongnam Provinces to evaluate insecticide resistance. As a result of experiments with populations collected from Yeoju, Gyeonggi Province, resistance ratios were 114.88, 54.75, 119.00, and 64.00 times higher than the susceptible population with methoxyfenozide, indoxacarb, cyantraniliprole, and fluxametamide, respectively. The resistance ratios of the Yongin population in Gyeonggi Province were 166.33 times with cyantraniliprole and 195.25 times with fluxametamide higher than the susceptible population. The Pocheon population in Gyeonggi Province showed a resistance ratio 283.23 times higher than methoxyfenozide. As a result of experiments with populations collected from Gimhae and Sangju, Yeongnam Province, the resistance ratios of the Gimhae population were 80.97, 138.00, and 89.50 times higher than the susceptible population with methoxyfenozide, cyantraniliprole, and fluxametamide, respectively. Meanwhile, the resistance ratios of the Sangju population were 85.83, 224.67, and 303.25 times higher than the susceptible population with methoxyfenozide, cyantraniliprole, and fluxametamide, respectively. The Yeongnam Province Tongyeong population showed a resistance ratio 367.28 times higher to methoxyfenozide.

Keywords

Acknowledgement

본 연구는 "농촌진흥청 농작물 주요 해충에 대한 농약 저항성 조사(RS-2022-RD010420)" 과제를 통해 지원받았습니다.

References

  1. Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18:265-267.
  2. Biradar R, Bheemanna M, Hosamani A, Naik H, Naik N, Kandpal K. 2020. Emamectin benzoate resistance in diamondback moth in different locations of Karnataka. Journal of Entomology and Zoology Studies 8:712-714.
  3. Chapman JW, Reynolds DR, Smith AD, Riley JR, Pedgley DE, Woiwod IP. 2002. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: A study using radar, aerial netting, and ground trapping. Ecological Entomology 27:641-650.
  4. Cho JM, Kim KJ, Kim S, Hur JH, Han DS. 2001. Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable croplands. The Korean Journal of Pesticide Science 5:30-35. [in Korean]
  5. Cho SR, Kyung Y, Shin S, Kang WJ, Jeong DH, Lee SJ, Park GH, Kim SI, Cho SW, Kim HK, et al. 2018. Susceptibility of field populations of Plutella xylostella and Spodoptera exigua to four diamide insecticides. Korean Journal of Applied Entomology 57:43-50.
  6. Couty A, Van Emden H, Perry JN, Hardie J, Pickett JA, Wadhams LJ. 2006. The roles of olfaction and vision in host-plant finding by the diamondback moth, Plutella xylostella. Physiological Entomology 31:134-145.
  7. DeAmicis C, Edwards NA, Giles MB, Harris GH, Hewitson P, Janaway L, Ignatova S. 2011. Comparison of preparative reversed phase liquid chromatography and countercurrent chromatography for the kilogram scale purification of crude spinetoram insecticide. Journal of Chromatography A 1218:6122-6127.
  8. dos Santos Stecca C, da Silva DM, de Freitas Bueno A, Pasini A, Denez MD, Andrade K. 2017. Seletividade de inseticidas utilizados na cultura da soja ao predador Podisus nigrispinus (Hemiptera: Pentatomidae). Semina: Ciencias Agrarias 38:3469-3480.
  9. Dosdall LM. 1994. Evidence for successful overwintering of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), in Alberta. The Canadian Entomologist 126:183-185.
  10. Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, Van Leeuwen T, Nauen R, Vontas J. 2016. Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proceedings of the National Academy of Sciences 113:14692-14697.
  11. Ellison FV. 2007. Characterization of fitness costs associated with insecticide resistance in the diamondback moth, Plutella xylostella, from Hawaii. p. 42. University of Delaware, Newark, USA.
  12. Endersby NM, Ridland PM, Hoffmann AA. 2008. The effects of local selection versus dispersal on insecticide resistance patterns: Longitudinal evidence from diamondback moth (Plutella xylostella (Lepidoptera: Plutellidae)) in Australia evolving resistance to pyrethroids. Bulletin of Entomological Research 98:145-157.
  13. Filomeno CA, Barbosa LCA, Teixeira RR, Pinheiro AL, de Sa Farias E, de Paula Silva EM, Picanco MC. 2017. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Industrial Crops and Products 109:374-383.
  14. Finney DJ. 1971. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods of Information in Medicine 10:237-245.
  15. Furlong MJ, Wright DJ, Dosdall LM. 2013. Diamondback moth ecology and management: Problems, progress, and prospects. Annual Review of Entomology 58:517-541.
  16. Gope A, Chakraborty G, Ghosh SM, Sau S, Mondal K, Biswas A, Sarkar S, Sarkar PK, Roy D. 2022. Toxicity and sublethal effects of fluxametamide on the key biological parameters and life history traits of diamondback moth Plutella xylostella (L.). Agronomy 12:1656.
  17. Hemingway J. 1995. Efficacy of etofenprox against insecticide susceptible and resistant mosquito strains containing characterized resistance mechanisms. Medical and Veterinary Entomology 9:423-426.
  18. Jansson RK, Brown R, Cartwright B, Cox D, Dunbar DM, Dybas RA, Eckel C, Lasota JA, Mookerjee PK, Norton JA, et al. 1997. Emamectin benzoate: A novel avermectin derivative for control of lepidopterous pests. pp. 1-7. In Proceedings of the 3rd International Workshop on Management of Diamondback Moth and Other Crucifer Pests. MARDI, Kuala Lumpur, Malaysia. Vegetable Pest Management.
  19. Jeon HY, Kim HH, Yang CY, Jang HI, Mok IG, Yiem MS. 2005. Damage and control threshold of the diamondback moth (Plutella xylostella L.) in Chinese cabbage. Korean Journal of Horticultural Science & Technology 23:333-336. [in Korean]
  20. Jeong IH, Lee SK, Gao Y, Jeon SW, Park B, Lee SB, Jeong JK, Lee SW, Lee SH, Kwon DH. 2017. Assessment of resistance levels of Plutella xylostella field populations to 11 pesticides and concept establishment for pesticide efficacy index. The Korean Journal of Pesticide Science 21:214-223. [in Korean]
  21. Jeschke P. 2021. Status and outlook for acaricide and insecticide discovery. Pest Management Science 77:64-76.
  22. Jiang T, Wu S, Yang T, Zhu C, Gao C. 2015. Monitoring field populations of Plutella xylostella (Lepidoptera: Plutellidae) for resistance to eight insecticides in China. Florida Entomologist 98:65-73.
  23. Kang WJ, Koo HN, Jeong DH, Kim HK, Kim J, Kim GH. 2017. Functional and genetic characteristics of Chlorantraniliprole resistance in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Entomological Research 47:394-403.
  24. Kao CH, Cheng EY. 2001. Insecticide resistance in Plutella xylostella L. XI. Resistance to newly introduced insecticides in Taiwan (1990-2001). Journal of Taiwan Agricultural Research 50:80-89.
  25. Kim J, Nam HY, Kwon M, Kim GH. 2019. Diamides resistance status and management strategy of Spodoptera exigua (Lepidoptera: Noctuidae) in South Korea. pp. 125-132. In Proceeding of VIII International Conference on Management of the Diamondback Moth and Other Crucifer Insect Pests.
  26. Kim JI, Joo YR, Kwon M, Kim GH, Lee SH. 2017. Mutations in ace1 associated with an organophosphate insecticide resistant population of Plutella xylostella. Mysore Journal of Agricultural Sciences 51:69-76.
  27. Kim JY, Lee EJ, Park SK, Choi GW, Baek NK. 2000. Physicochemical quality characteristics of several Chinese cabbage (Brassica pekinensis RuPR) cultivars. Korean Journal of Horticultural Science & Technology 18:348-352. [in Korean]
  28. Kim MH, Lee SC. 1991. Bionomics of diamond-back moth, Plutella xylostella (Lepidoptera: Plutellidae) in southern region of Korea. Korean Journal of Applied Entomology 30:169-173. [in Korean]
  29. Kim YR, Cho MS, Oh SM, Kim SW, Youn YN, Yu YM. 2010. Resistance and susceptibility of diamondback moth, Plutella xylostella strains collected from different region in Korea to Bacillus thuringiensis. The Korean Journal of Pesticide Science 14:123-132. [in Korean]
  30. Kwon DH, Kim K, Kang TJ, Kim SJ, Choi BR, Kim JI, Lee SH. 2015. Establishment of an insecticide resistance monitoring protocol based on the residual contact vial bioassay for Frankliniella occidentalis. Journal of Asia-Pacific Entomology 18:311-314.
  31. Lee SC, Cho YS, Kim DI. 1993. Comparative study of toxicological methods and field resistance to insecticides in diamondback moth (Lepidoptera: Plutellidae). Korean Journal of Applied Entomology 32:323-329. [in Korean]
  32. Lima Neto JE, Amaral MHP, Siqueira HAA, Barros R, Silva PAF. 2016. Resistance monitoring of Plutella xylostella (L.) (Lepidoptera: Plutellidae) to risk-reduced insecticides and cross resistance to spinetoram. Phytoparasitica 44:631-640.
  33. Mau RFL, Gusukuma-Minuto L. 2001. Diamondback moth, Plutella xylostella (L.), resistance management in Hawaii. pp. 26-29. In Proceeding of The Management of Diamondback Moth and Other Crucifer Pests 4th Intl Work.
  34. Pavela R. 2012. Efficacy of three newly developed botanical insecticides based on pongam oil against Plutella xylostella L. larvae. Journal of Biopesticides 5:62-70.
  35. Perry KD, Baxter SW, Keller MA. 2019. Unveiling diamondback moth, Plutella xylostella, movement at landscape and regional scales. pp. 33-41. In Proceeding of VIII International Conference on Management of the Diamondback Moth and Other Crucifer Insect Pests.
  36. Quan LF, Zhang HJ, Sun L, Li YY, Yan WT, Yue Q, Qiu GS. 2016. Research advances in sublethal effect of pesticide. Journal of Agricultural 6:33-38.
  37. Raghavendra K, Barik TK, Sharma P, Bhatt RM, Srivastava HC, Sreehari U, Dash AP. 2011. Chlorfenapyr: A new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malaria Journal 10:16.
  38. RDA. 2023. List of pesticide products. Pesticide Safety Information System. Accessed in https://psis.rda.go.kr/psis/agc/res/agchmRegistStusLst.ps on 27 October 2023.
  39. Rehan A, Freed S. 2014. Resistance selection, mechanism and stability of Spodoptera litura (Lepidoptera: Noctuidae) to methoxyfenozide. Pesticide Biochemistry and Physiology 110:7-12.
  40. Ribeiro LMS, Siqueira HAA, Wanderley-Teixeira V, Ferreira HN, Silva WM, Silva JE, Teixeira AAC. 2017. Field resistance of Brazilian Plutella xylostella to diamides is not metabolism-mediated. Crop Protection 93:82-88.
  41. Roditakis E, Vasakis E, Grispou M, Stavrakaki M, Nauen R, Gravouil M, Bassi A. 2015. First report of Tuta absoluta resistance to diamide insecticides. Journal of Pest Science 88:9-16.
  42. Schneider MI, Smagghe G, Gobbi A, Vinuela E. 2003. Toxicity and pharmacokinetics of insect growth regulators and other novel insecticides on pupae of Hyposoter didymator (Hymenoptera: Ichneumonidae), a parasitoid of early larval instars of lepidopteran pests. Journal of Economic Entomology 96:1054-1065.
  43. Selby TP, Lahm GP, Stevenson TM, Hughes KA, Cordova D, Annan IB, Barry JD, Benner EA, Currie MJ, Pahutski TF. 2013. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorganic & Medicinal Chemistry Letters 23:6341-6345.
  44. Smagghe G, Pineda S, Carton B, Estal PD, Budia F, Vinuela E. 2003. Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest Management Science 59:1203-1209.
  45. Song SS. 1991. Resistance of diamondback moth (Plutella xylostella L.: Yponomeutidae: Lepidoptera) against Bacillus thuringiensis Berliner. Korean Journal of Applied Entomology 30:291-293.
  46. Tabashnik BE, Cushing NL, Finson N, Johnson MW. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 83:1671-1676.
  47. Tamilselvan R, Kennedy JS, Suganthi A. 2021. Monitoring the resistance and baseline susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) against spinetoram in Tamil Nadu, India. Crop Protection 142:105491.
  48. Uchiyama T, Ozawa A. 2014. Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan. Applied Entomology and Zoology 49:529-534.
  49. Umeda K, Yano T, Hirano M. 1988. Pyrethroid-resistance mechanism in German cockroach, Blattella germanica (Orthoptera: Blattellidae). Applied Entomology and Zoology 23:373-380.
  50. Umetsu N. Shirai Y. 2020. Development of novel pesticides in the 21st century. Journal of Pesticide Science 45:54-74.
  51. Uthamasamy S, Kannan M, Senguttuvan K, Jayaprakash SA. 2011. Status, damage potential and management of diamondback moth, Plutella xylostella (L.) in Tamil Nadu, India. pp. 270-279. In Proceeding of The Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, AVRDC-The World Vegetable Centre, Taiwan.
  52. Wang X, Wu Y. 2012. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. Journal of Economic Entomology 105:1019-1023.
  53. Wei SJ, Shi BC, Gong YJ, Jin GH, Chen XX, Meng XF. 2013. Genetic structure and demographic history reveal migration of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) from the southern to northern regions of China. PloS One 8:e59654.
  54. Wing KD, Sacher M, Kagaya Y, Tsurubuchi Y, Mulderig L, Connair M, Schnee M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection 19:537-545.
  55. Yao R, Zhao DD, Zhang S, Zhou LQ, Wang X, Gao CF, Wu SF. 2017. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides. Pest Management Science 73:1169-1178.
  56. Yin F, Lin QS, Feng X, Chen HY, Li ZY, Hu ZD. 2017. Analysis of differentially expressed proteins between the spinetoram-susceptible and-resistant strains of Plutella xylostella (L.). Journal of Asia-Pacific Entomology 20:119-124.
  57. Zago HB, Siqueira HAA, Pereira EJG, Picanco MC, Barros R. 2014. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Management Science 70:488-495.
  58. Zhao JZ, Collins HL, Li YX, Mau RFL, Thompson GD, Hertlein M, Andaloro JT, Boykin R, Shelton AM. 2006. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology 99:176-181.
  59. Zhao L, Chen G, Zhao J, Zhang Y, Zhu Y, Yang T, Wu YL. 2015. Degradation kinetics of the insecticide spinetoram in a rice field ecosystem. Chemosphere 119:1185-1191.
  60. Zuo Y, Wang H, Xu Y, Huang J, Wu S, Wu Y, Yang Y. 2017. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochemistry and Molecular Biology 89:79-85.