DOI QR코드

DOI QR Code

Is Brand Identity Aligned with Brand Image on Instagram? An Empirics-First Investigation of the Indian Brands

  • Received : 2023.03.08
  • Accepted : 2023.07.10
  • Published : 2023.09.30

Abstract

Effective brand management using images has been a challenge for the brand managers. The brand identity-brand image alignment on the social media is an important yet mostly-overlooked phenomenon. We proposed a scalable Google Cloud Vision-based approach for measuring the alignment between brand identity and brand image, and understanding the brand positions. We analyzed 3247 images of 13 leading Indian brands on Instagram. Images containing wordy announcements by the firms are in stark contrast with the relatively more emotive images by the users. It leads to a noticeable disconnect between the brand identity and brand image. Also, the private sector brands do not always outperform the public sector brands in branding efforts. By offering practical guidance on how to measure and reduce the misalignment, this study paved a feasible path towards better visual branding on Instagram.

Keywords

References

  1. Aaker, D. A. (2012). Building Strong Brands. New York: Simon and Schuster.
  2. Abdul, S. B., Soundararajan, V., and Parayitam, S. (2022). The relationship between social media influence, EWOM, and e-satisfaction of consumers in India: A moderated moderated-mediation conditional model. Global Business Review, 09721509221130153. https://doi.org/10.1177/09721509221130153
  3. American Marketing Association (1960). Definition of Service. Chicago, IL: American Marketing Association.
  4. Angelov, D. (2020). Top2vec: Distributed representations of topics. arXiv preprint arXiv: 2008.09470.
  5. Ansari, A., Li, Y., and Zhang, J. Z. (2018). Probabilistic topic model for hybrid recommender systems: A stochastic variational Bayesian approach. Marketing Science, 37(6), 987-1008. https://doi.org/10.1287/mksc.2018.1113
  6. Arabadzhyan, A., Figini, P., and Vici, L. (2021). Measuring destination image: A novel approach based on visual data mining. A methodological proposal and an application to European islands. Journal of Destination Marketing & Management, 20, 100611.
  7. Arora, A., Bansal, S., Kandpal, C., Aswani, R., and Dwivedi, Y. (2019). Measuring social media influencer index-insights from Facebook, Twitter and Instagram. Journal of Retailing and Consumer Services, 49, 86-101. https://doi.org/10.1016/j.jretconser.2019.03.012
  8. Bakri, M., Krisjanous, J., and Richard, J. E. (2020). Decoding service brand image through user-generated images. Journal of Services Marketing, 34(4), 429-442. https://doi.org/10.1108/JSM-11-2018-0341
  9. Bhatia, R., Gupta, A., Vimalkumar, M., and Sharma, D. (2023). Factors affecting Consumer Brand Sabotage virality: A study of an Indian brand #boycott. Information Systems and e-Business Management, 1-28. https://doi.org/10.1007/s10257-023-00628-0
  10. Blankson, C., and Kalafatis, S. P. (1999). Issues and challenges in the positioning of service brands: A review. Journal of Product & Brand Management, 8(2), 106-118. https://doi.org/10.1108/10610429910266968
  11. Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(2), 993-1022.
  12. Brand Finance (2021). The Brand Finance India 100. Retrieved from https://brandfinance.com/wp-content/uploads/1/the_brand_finance_india_100.pdf
  13. Cayla, J., and Eckhardt, G. M. (2007). Asian brands without borders: Regional opportunities and challenges. International Marketing Review, 24(4), 444-456. https://doi.org/10.1108/02651330710761017
  14. Clarifai (2022). Retrieved from https://clarifai.com
  15. Colicev, A., Kumar, A., and O'Connor, P. (2019). Modeling the relationship between firm and user generated content and the stages of the marketing funnel. International Journal of Research in Marketing, 36(1), 100-116. https://doi.org/10.1016/j.ijresmar.2018.09.005
  16. Culotta, A. and Cutler, J. (2016). Mining brand perceptions from Twitter social networks. Marketing Science, 35(3), 343-362. https://doi.org/10.1287/mksc.2015.0968
  17. Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., and Harshman, R. (1988). Using latent semantic analysis to improve access to textual information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 281-285).
  18. Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88, 303-338. https://doi.org/10.1007/s11263-009-0275-4
  19. Ferwerda, B., and Tkalcic, M. (2018). You are what you post: What the content of Instagram pictures tells about users' personality. In The 23rd International on Intelligent User Interfaces, March 7-11, Tokyo, Japan. CEUR-WS.
  20. Fevotte, C., and Idier, J. (2011). Algorithms for nonnegative matrix factorization with the β-divergence. Neural Computation, 23(9), 2421-2456. https://doi.org/10.1162/NECO_a_00168
  21. Golder, P. N., Dekimpe, M., An, J. T., van Heerde, H. J., Kim, D., and Alba, J. W. (2022). Learning from data: An empirics-first approach to relevant knowledge generation. Journal of Marketing, 87(3), 319-336. https://doi.org/10.1177/00222429221129200
  22. Google (2022). Vision API. Retrieved from https://cloud.google.com/vision/?hl=de
  23. Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.
  24. Heinberg, M., Ozkaya, E., and Taube, M. (2018). Do corporate image and reputation drive brand equity in India and China? Similarities and differences. Journal of Business Research, 86, 259-268. https://doi.org/10.1016/j.jbusres.2017.09.018
  25. Hernandez-Mendez, J., and Munoz-Leiva, F. (2015). What type of online advertising is most effective for eTourism 2.0? An eye tracking study based on the characteristics of tourists. Computers in Human Behavior, 50, 618-625. https://doi.org/10.1016/j.chb.2015.03.017
  26. Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  27. Hofstede, G. (1980). Culture's Consequences: International Differences in Work-Related Values. Newbury Park, CA: Sage.
  28. Hsieh, M. H. (2004). Measuring global brand equity using cross-national survey data. Journal of International Marketing, 12(2), 28-57. https://doi.org/10.1509/jimk.12.2.28.32897
  29. Huang, M. H., and Dev, C. S. (2020). Growing the service brand. International Journal of Research in Marketing, 37(2), 281-300. https://doi.org/10.1016/j.ijresmar.2019.10.001
  30. Jaakonmaki, R., Muller, O., and Vom Brocke, J. (2017). The impact of content, context, and creator on user engagement in social media marketing. In Hawaii International Conference on System Sciences.
  31. Kane, G. C., and Pear, A. (2016). The rise of visual content online. MIT Sloan Management Review.
  32. Kantar (2020). BrandZ Top 75 most valuable Indian brands 2020. Retrieved from https://www.kantar.com/campaigns/brandz-downloads/brandz-top-75-mostvaluable-indian-brands-2020
  33. Kantar (2021). India's most purposeful brands 2021. Retrieved from https://www.kantar.com/inspiration/brands/2021-indias-most-purposeful-brands-amazon-asian-paints-and-tata-tea.
  34. Keller, K. L., and Swaminathan, V. (2019). Strategic Brand Management: Building, Measuring, and Managing Brand Equity. London: Pearson.
  35. Klostermann, J., Plumeyer, A., Boger, D., and Decker, R. (2018). Extracting brand information from social networks: Integrating image, text, and social tagging data. International Journal of Research in Marketing, 35(4), 538-556. https://doi.org/10.1016/j.ijresmar.2018.08.002
  36. Kuksov, D., Shachar, R., and Wang, K. (2013). Advertising and consumers' communications. Marketing Science, 32(2), 294-309. https://doi.org/10.1287/mksc.1120.0753
  37. Lee, S. H., and Kim, H. W. (2020). Investigating brand page engagement in the SNS marketing context. Asia Pacific Journal of Information Systems, 30(2), 284-307. https://doi.org/10.14329/apjis.2020.30.2.284
  38. Lieven, T., and Hildebrand, C. (2016). The impact of brand gender on brand equity: Findings from a large-scale cross-cultural study in ten countries. International Marketing Review, 33(2), 178-195. https://doi.org/10.1108/IMR-08-2014-0276
  39. Liu, L., Dzyabura, D., and Mizik, N. (2020). Visual listening in: Extracting brand image portrayed on social media. Marketing Science, 39(4), 669-686. https://doi.org/10.1287/mksc.2020.1226
  40. Lu, D., Wu, R., and Sang, J. (2017). Overlapped user-based comparative study on photo-sharing websites. Information Sciences, 376, 54-70. https://doi.org/10.1016/j.ins.2016.10.005
  41. Mazloom, M., Rietveld, R., Rudinac, S., Worring, M., and Van Dolen, W. (2016, October). Multimodal popularity prediction of brand-related social media posts. In Proceedings of the 24th ACM international conference on Multimedia (pp. 197-201).
  42. McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276-282. https://doi.org/10.11613/BM.2012.031
  43. Miah, S. J., Vu, H. Q., Gammack, J., and McGrath, M. (2017). A big data analytics method for tourist behaviour analysis. Information & Management, 54(6), 771-785. https://doi.org/10.1016/j.im.2016.11.011
  44. Moussa, S. (2019). An emoji-based metric for monitoring consumers' emotions toward brands on social media. Marketing Intelligence & Planning, 37(2), 211-225. https://doi.org/10.1108/MIP-07-2018-0257
  45. Nanne, A. J., Antheunis, M. L., van der Lee, C. G., Postma, E. O., Wubben, S., and van Noort, G. (2020). The use of computer vision to analyze brand-related user generated image content. Journal of Interactive Marketing, 50, 156-167. https://doi.org/10.1016/j.intmar.2019.09.003
  46. Nebenzahl, I. D., Jaffe, E. D., and Lampert, S. I. (1997). Towards a theory of country image effect on product evaluation. MIR: Management International Review, 37(1), 27-49.
  47. Park, J. W., Cho, E. Y., and Kim, H. W. (2016). Examining context-specific social media marketing strategies. Asia Pacific Journal of Information Systems, 26(1), 143-162. https://doi.org/10.14329/apjis.2016.26.1.143
  48. Pareek, V., and Harrison, T. (2020). SERVBID: The development of a B2C service brand identity scale. Journal of Services Marketing, 34(5), 601-620. https://doi.org/10.1108/JSM-05-2019-0195
  49. Rao, C. Radhakrishna (1995), "Use of Hellinger Distance in Graphical Displays," In Multivariate Statistics and Matrices in Statistics (pp. 143-161). Leiden, The Netherlands: Brill Academic Publisher.
  50. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).
  51. Rust, R. T., Rand, W., Huang, M. H., Stephen, A. T., Brooks, G., and Chabuk, T. (2021). Real-time brand reputation tracking using social media. Journal of Marketing, 85(4), 21-43. https://doi.org/10.1177/0022242921995173
  52. Samiee, S. (1994). Customer evaluation of products in a global market. Journal of International Business Studies, 25(3), 579-604. https://doi.org/10.1057/palgrave.jibs.8490213
  53. Sengupta, A., Wesley, S., Cavender, R., and Lee, M. Y. (2022). Global vs local: Analysis of the consumer-brand relationships in India. International Journal of Retail & Distribution Management, 50(3), 361-376. https://doi.org/10.1108/IJRDM-08-2020-0306
  54. Sharma, A., Patro, S., and Chaudhry, H. (2022). Brand identity and culture interaction in the Indian context: A grounded approach. Journal of Advances in Management Research, 19(1), 31-54. https://doi.org/10.1108/ JAMR-12-2020-0361
  55. Srinivasan, N., Jain, S. C., and Sikand, K. (2004). An experimental study of two dimensions of country-of-origin (manufacturing country and branding country) using intrinsic and extrinsic cues. International Business Review, 13(1), 65-82. https://doi.org/10.1016/j.ibusrev.2003.05.004
  56. Statista (2022). Leading countries based on Instagram audience size as of January 2022. Retrieved from https://www.statista.com/statistics/578364/countries-with-most-instagram-users
  57. Triandis, H. C. (1995). Individualism and Collectivism. Westview Press Boulder.
  58. UN (2023). UN DESA Policy Brief No. 153: India overtakes China as the world's most populous country | Department of Economic and Social Affairs. Retrieved from https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-no-153-india-overtakes-china-as-the-worlds-most-populous-country
  59. Waheed, A., Farrukh, M., Zameer, H., and Khan, S. Z. (2021). Understanding the impact of social apps and social network sites on consumer's online purchase intention. Global Business Review, 22(3), 634-649. https://doi.org/10.1177/0972150918816901
  60. Wedel, M., and Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121. https://doi.org/10.1509/jm.15.0413
  61. Yadav, M. L., Dugar, A., and Baishya, K. (2022). Decoding customer opinion for products or brands using social media analytics: A case study on indian brand patanjali. International Journal of Intelligent Information Technologies (IJIIT), 18(2), 1-20. https://doi.org/10.4018/IJIIT.296271
  62. Yousaf, A., Amin, I., Jaziri, D., and Mishra, A. (2021). Effect of message orientation/vividness on consumer engagement for travel brands on social networking sites. Journal of Product & Brand Management, 30(1), 44-57. https://doi.org/10.1108/JPBM-08-2019-2546
  63. Yu, B. (2022). How consumer opinions are affected by marketers: an empirical examination by deep learning approach. Journal of Research in Interactive Marketing, 16(4), 601-614. https://doi.org/10.1108/JRIM-04-2021-0106
  64. Zarantonello, L., Grappi, S., Formisano, M., and Brakus, J. (2020). How consumer-based brand equity relates to market share of global and local brands in developed and emerging countries. International Marketing Review, 37(2), 345-375. https://doi.org/10.1108/IMR-05-2018-0176