DOI QR코드

DOI QR Code

Free to Premium in Mobile TV Service: Intrinsic and Extrinsic Motivational Factors Affecting Free Users' Paid Subscription Intention

  • Jaemin Song (Department of Area of Management, Sungkonghoe University) ;
  • Sunghan Ryu (USC-SJTU Institute of Cultural and Creative Industry, Shanghai Jiao Tong University) ;
  • Young-gul Kim (College of Business, Korea Advanced Institute of Science and Technology)
  • Received : 2022.09.22
  • Accepted : 2023.02.03
  • Published : 2023.06.30

Abstract

Mobile TV refers to the service that provides live broadcasting and video-on-demand content through a mobile device. In addition to the advertisement as the early-stage revenue model, the paid subscription model has emerged as a more sustainable revenue source for mobile TV services. In this study, with the surveys of 450 free mobile TV users, we examine the motivational factors influencing their intention to adopt a paid subscription model. Results show that three extrinsic motivations, price fairness, subjective norm, and mobile TV utilization, are positively associated with free users' paid subscription intention. In contrast, intrinsic motivations, such as hedonic need, spatiotemporal convenience, and self-efficacy, have no significant influence on the intention. We also found that the expected value is positively associated with attitude toward mobile TV service, also positively influencing the paid subscription intention.

Keywords

References

  1. Ajzen, I., and Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood-Cliffs, NJ: Prentice-Hall.
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  3. Armitage, C. J., and Christian, J. (2003). From attitudes to behaviour: Basic and applied research on the theory of planned behaviour. Current Psychology, 22(3), 187-195. https://doi.org/10.1007/s12144-003-1015-5
  4. Babin, B. J., Darden, W. R., and Griffin, M. (1994). Work and/or fun: Measuring hedonic and utilitarian shopping value. Journal of Consumer Research, 20(4), 644-656. https://doi.org/10.1086/209376
  5. Baldwin, C. Y., Clark, K. B., and Clark, K. B. (2000). Design Rules: The Power of Modularity (Vol. 1). Massachusetts: MIT press.
  6. Baldwin, C. Y., and Woodard, C. J. (2009). The architecture of platforms: A unified view. Platforms, Markets and Innovation, 32. https://doi.org/10.2139/ssrn.1265155
  7. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
  8. Bentley, F., and Lottridge, D. (2019). Understanding mass-market mobile TV behaviors in the streaming era. In Paper presented at the Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
  9. Bock, G.-W., Zmud, R. W., Kim, Y.-G., and Lee, J.-N. (2005). Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 29(1), 87-111. https://doi.org/10.2307/25148669
  10. Bolton, L. E., Warlop, L., and Alba, J. W. (2003). Consumer perceptions of price (un)fairness. Journal of Consumer Research, 29(4), 474-491. https://doi.org/10.1086/346244
  11. Bruggen, E., Wetzels, M., de Ruyter, K., and Schillewaert, N. (2011). Individual differences in motivation to participate in online panels: The effect on response rate and response quality perceptions. International Journal of Market Research, 53(3), 369-390. https://doi.org/10.2501/IJMR-53-3-369-390
  12. Bruner II, G. C., and Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of Business Research, 58(5), 553-558. https://doi.org/10.1016/j. jbusres.2003.08.002
  13. Buettner, R. (2017). Predicting user behavior in electronic markets based on personality-mining in large online social networks. Electronic Markets, 27(3), 247-265. https://doi.org/10.1007/s12525-016-0228-z
  14. Campbell, M. C. (1999). Perceptions of price unfairness: Antecedents and consequences. Journal of Marketing Research, 36(May), 187-199. https://doi.org/10.2307/3152092
  15. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
  16. Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of Partial Least Squares (pp. 655-690). Berlin: Springer.
  17. Choi, Y. K., and Totten, J. W. (2012). Self-construal's role in mobile TV acceptance: Extension of TAM across cultures. Journal of Business Research, 65(11), 1525-1533. https://doi.org/10.1016/j.jbusres.2011.02.036
  18. Coursaris, C., and Hassanein, K. (2002). Understanding m-commerce: A consumer-centric model. Quarterly Journal of Electronic Commerce, 3, 47-72.
  19. Cronin, J. J., Brady, M. K., and Hult, G. T. M. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environments. Journal of Retailing, 76(2), 193-218. https://doi.org/10.1016/S0022-4359(00)00028-2
  20. Dahabiyeh, L., Najjar, M. S., and Agrawal, D. (2020). The effect of risk levels on technology adoption decision: the case of online games. Information Technology & People, 33(5), 1525-1533. https://doi.org/10.1108/ITP-09-2019-0455
  21. de Vries, H., Dijkstra, M., and Kuhlman, P. (1988). Self-efficacy: The third factor besides attitude and subjective norm as a predictor of behavioural intentions. Health Education Research, 3(3), 273-282. https://doi.org/10.1093/her/3.3.273
  22. Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105. https://doi.org/10.1037/h0030644
  23. Deci, E. L., and Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109-134. https://doi.org/10.1016/0092-6566(85)90023-6
  24. Deci, E. L., and Ryan, R. M. (2002). Handbook of Self-determination Research. Rochester. NY: University Rochester Press.
  25. Deci, E. L., Vallerand, R. J., Pelletier, L. G., and Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3-4), 325-346. https://doi.org/10.1207/s15326985ep2603&4_6
  26. Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., and Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434-449. https://doi.org/10.1007/s11747-011-0300-3
  27. Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41(10), 1040.
  28. Eagly, A. H., and Chaiken, S. (1993). The Psychology of Attitudes. CA: Harcourt brace Jovanovich college publishers.
  29. Etzioni, A. (2010). Moral Dimension: Toward a New Economics. NY: Simon and Schuster.
  30. Evens, T., Lefever, K., Valcke, P., Schuurman, D., and De Marez, L. (2011). Access to premium content on mobile television platforms: The case of mobile sports. Telematics and Informatics, 28(1), 32-39. https://doi.org/10. 1016/j.tele.2010.05.004 https://doi.org/10.1016/j.tele.2010.05.004
  31. Fishbein, M., and Ajzen, I. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. MA: Addison-Wesley.
  32. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
  33. Gefen, D., and Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the Association for Information Systems, 16(1), 5. https://doi.org/10.17705/1CAIS.01605
  34. Ghazawneh, A., and Henfridsson, O. (2013). Balancing platform control and external contribution in third party development: The boundary resources model. Information Systems Journal, 23(2), 173-192. https://doi.org/10.1111/j.1365-2575.2012.00406.x
  35. Ghazawneh, A., and Henfridsson, O. (2015). A paradigmatic analysis of digital application marketplaces. Journal of Information Technology, 30(3), 198-208. https://doi.org/10.1057/jit.2015.16
  36. Grewal, D., Hardesty, D. M., and Iyer, G. R. (2004). The effects of buyer identification and purchase timing on consumers' perceptions of trust, price fairness, and repurchase intentions. Journal of Interactive Marketing, 18(4), 87-100. https://doi.org/10.1002/dir.20024
  37. Gu, X., Kannan, P., and Ma, L. (2018). Selling the premium in freemium. Journal of Marketing, 82(6), 10-27. https://doi.org/10.1177/ 0022242918807170
  38. Hair, J. F., Anderson, R. E., Babin, B. J., and Black, W. C. (2010). Multivariate Data Analysis: A Global Perspective (Vol. 7). NJ: Pearson.
  39. Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108 /EBR-11-2018-0203 https://doi.org/10.1108/EBR-11-2018-0203
  40. Hau, Y. S., and Kim, Y.-G. (2011). Why would online gamers share their innovation-conducive knowledge in the online game user community? Integrating individual motivations and social capital perspectives. Computers in Human Behavior, 27(2), 956-970. https://doi.org/10.1016/ j.chb.2010.11.022
  41. Henseler, J., and Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of available procedures. In Handbook of Partial Least Squares (pp. 713-735). Berlin, Springer.
  42. Homer, P. M., and Kahle, L. R. (1988). A structural equation test of the value-attitude-behavior hierarchy. Journal of Personality and Social Psychology, 54(4), 638. https://doi.org/10. 1037/0022-3514.54.4.638 https://doi.org/10.1037/0022-3514.54.4.638
  43. Huang, S.-L., and Kuo, S.-Y. (2020). Understanding why people share in the sharing economy. Online Information Review, 44, 805-825. https://doi.org/10.1108/OIR-03 -2017-0073
  44. Huang, T.-L., and Liao, S. (2015). A model of acceptance of augmented-reality interactive technology: The moderating role of cognitive innovativeness. Electronic Commerce Research, 15(2), 269-295. https://doi.org/10. 1007/s10660-014-9163-2 https://doi.org/10.1007/s10660-014-9163-2
  45. Hull, C. L. (1943). Principles of Behavior: An Introduction to Behavior Theory. NY: Appleton-Century-Crofts.
  46. Humphreys, M. S., and Revelle, W. (1984). Personality, motivation, and performance: a theory of the relationship between individual differences and information processing. Psychological Review, 91(2), 153. https://doi.org/10.1037/0033-295X.91.2.153
  47. Jung, Y., Perez-Mira, B., and Wiley-Patton, S. (2009). Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in Human Behavior, 25(1), 123-129. https://doi.org/10.1016/j.chb.2008. 07.011
  48. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
  49. Kaufmann, N., Schulze, T., and Veit, D. (2011). More than fun and money. Worker motivation in crowdsourcing: A study on mechanical Turk. Paper presented at the AMCIS.
  50. Kim, E.-m., and Park, S. (2008). Distributing TV dramas in the digital environment: A Korean case. Asian Journal of Communication, 18(2), 137-154. https://doi.org/10.1080/01292980802021889
  51. Kim, K., Kim, H.-S., Chung, M.-Y., and Kim, Y. (2021). Do viewers really talk about ads during commercial breaks? Findings from a South Korean social TV platform. Asian Journal of Communication, 31(4), 299-317. https://doi.org/10.1080/01292986.2021.1945118
  52. Kim, M. S., Kim, E., Hwang, S., Kim, J., and Kim, S. (2017). Willingness to pay for over-the-top services in China and Korea. Telecommunications Policy, 41(3), 197-207. https://doi.org/10.1016/j.telpol.2016.12.011
  53. Kleijnen, M., De Ruyter, K., and Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the moderating role of time consciousness. Journal of Retailing, 83(1), 33-46. https://doi.org/10.1016/j.jretai.2006. 10.004
  54. Kleijnen, M., Wetzels, M., and De Ruyter, K. (2004). Consumer acceptance of wireless finance. Journal of Financial Services Marketing, 8(3), 206-217. https://doi.org/:10.1057/palgrave. fsm.4770120
  55. Kleinrock, L. (1996). Nomadicity: Anytime, anywhere in a disconnected world. Mobile Networks and Applications, 1(4), 351-357.
  56. Kline, T. (2005). Psychological Testing: A Practical Approach to Design and Evaluation. California: Sage.
  57. Kuo, F. Y., and Young, M. L. (2008). A study of the intention-action gap in knowledge sharing practices. Journal of the American Society for Information Science and Technology, 59(8), 1224-1237. https://doi.org/10.1002/asi. 20816
  58. Lee, H., Kim, D., Ryu, J., and Lee, S. (2011). Acceptance and rejection of mobile TV among young adults: A case of college students in South Korea. Telematics and Informatics, 28(4), 239-250. https://doi.org/10.1016/j.tele.2010. 04.002
  59. Lee, J.-N., and Kim, Y.-G. (1999). Effect of partnership quality on IS outsourcing success: conceptual framework and empirical validation. Journal of Management Information Systems, 15(4), 29-61. https://doi.org/10.1080/07421222.1999.11518221
  60. Leung, L., and Chen, C. (2017). Extending the theory of planned behavior: A study of lifestyles, contextual factors, mobile viewing habits, TV content interest, and intention to adopt mobile TV. Telematics and Informatics, 34(8), 1638-1649. https://doi.org/10.1016/j.tele.2017.07.010
  61. Lin, C. S., Wu, S., and Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683-693. https://doi.org/10.1016/j.im.2004.04.003
  62. Lyytinen, K., and Yoo, Y. (2002). Research commentary: the next wave of nomadic computing. Information Systems Research, 13(4), 377-388. https://doi.org/10.1287/isre.13.4.377.75
  63. Mallat, N., Rossi, M., Tuunainen, V. K., and Oorni, A. (2009). The impact of use context on mobile services acceptance: The case of mobile ticketing. Information & Management, 46(3), 190-195. https://doi.org/10.1016/j.im.2008. 11.008
  64. Manfredo, M. J., and Fulton, D. C. (1997). A comparison of wildlife values in Belize and Colorado. Human Dimensions of Wildlife, 2(2), 62-63. https://doi.org/10.1080/108712097 09359096
  65. Miracle, G. E., and Bang, H.-K. (2002). Achieving reliable and valid cross-cultural research results in content analysis. New Directions in International Advertising Research-Advances in International Marketing, American Marketing Association, Chicago, IL, 9-23.
  66. Moon, J.-W., and Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6 
  67. Ng, P., Lee, D., Wong, P., and Lam, R. (2020). Making a higher education institution choice: Differences in the susceptibility to online information on students' advice-seeking behavior. Online Information Review, 44(44), 847-861. https://doi.org/10.1108/OIR-07-2019-0218
  68. Orlikowski, W. J., and Iacono, C. S. (2001). Research commentary: Desperately seeking the "IT" in IT research-A call to theorizing the IT artifact. Information Systems Research, 12(2), 121-134. https://doi.org/10.1287/isre.12.2.121.9700
  69. Ouellette, J. A., and Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychological Bulletin, 124(1), 54. https://doi.org/ 10.1037/0033-2909.124.1.54
  70. Pedersen, P. E., and Ling, R. (2003). Modifying adoption research for mobile Internet service adoption: Cross-disciplinary interactions. In 36th Annual Hawaii International Conference on System Sciences.
  71. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., and Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879
  72. Rust, R. T., Lemon, K. N., and Zeithaml, V. A. (2004). Return on marketing: Using customer equity to focus marketing strategy. Journal of Marketing, 68(1), 109-127. https://doi.org/10.1509/jmkg.68.1.109.24030
  73. Ryan, R. M., and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10. 1006/ceps.1999.1020 https://doi.org/10.1006/ceps.1999.1020
  74. Ryan, R. M., and Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68. https://doi.org/10.1037/0003-066X.55.1.68
  75. Saga, V. L., and Zmud, R. W. (1993). The nature and determinants of IT acceptance, routinization, and infusion. In Paper presented at the Proceedings of the IFIP TC8 working conference on diffusion, transfer and implementation of information technology.
  76. Shim, J. (2005). Korea's lead in mobile cellular and DMB phone services. Communications of the Association for Information Systems, 15(1), 42. https://doi.org/10.17705/1CAIS.01542
  77. Skinner, B. F. (1953). Science and Human Behaviour. NY: Simon and Schuster.
  78. Tiwana, A., Konsynski, B., and Bush, A. A. (2010). Research commentary-Platform evolution: Coevolution of platform architecture, governance, and environmental dynamics. Information Systems Research, 21(4), 675-687. https://doi.org/10.1287/isre.1100.0323
  79. Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. Advances in Experimental Social Psychology, 29, 271-360. https://doi.org/10.1016/S0065-26 01(08)60019-2
  80. Van Rees, K., and Van Eijck, K. (2003). Media repertoires of selective audiences: The impact of status, gender, and age on media use. Poetics, 31(5-6), 465-490. https://doi.org/10.1016/j.poetic.2003.09.005
  81. Vaske, J. J., and Donnelly, M. P. (1999). A value-attitude-behavior model predicting wildland preservation voting intentions. Society & Natural Resources, 12(6), 523-537. https://doi.org/10.1080/089419299279425
  82. Walia, N., Srite, M., and Huddleston, W. (2016). Eyeing the web interface: The influence of price, product, and personal involvement. Electronic Commerce Research, 16(3), 297-333. https://doi.org/10.1007/ s10660-015-9200-9
  83. Wang, C.-Y., Chang, H.-C., Chou, S.-c. T., and Chen, F.-F. (2013). Acceptance and Willingness to Pay for Mobile TV Apps. In Paper presented at the PACIS.
  84. Wang, K., and Lin, C. L. (2012) The adoption of mobile value added services: Investigating the influence of IS quality and perceived playfulness. Managing Service Quality, 22(2), 184-208. https://doi.org/10.1108/0960452 1211219007
  85. Wei, R. (2008). Motivations for using the mobile phone for mass communications and entertainment. Telematics and Informatics, 25(1), 36-46. https://doi.org/10.1016/j.tele. 2006.03.001
  86. Wiener, Y. (1982). Commitment in organizations: A normative view. Academy of Management Review, 7(3), 418-428. https://doi.org/10. 2307/257334 https://doi.org/10.2307/257334
  87. Wong, C.-H., Tan, G. W.-H., Hew, T.-S., and Ooi, K.-B. (2016). Can mobile TV be a new revolution in the television industry? Computers in Human Behavior, 55, 764-776. https://doi.org/10.1016/j.chb.2015.10.021
  88. Xia, L., Monroe, K. B., and Cox, J. L. (2004). The price is unfair! A conceptual framework of price fairness perceptions. Journal of Marketing, 68(4), 1-15. https://doi.org/10.1509/jmkg. 68.4.1.42733
  89. Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 2-22. https://doi.org/10.2307/1251446
  90. Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour & Information Technology, 32(3), 263-272. https://doi.org/10.1080/0144929X.2011.650711