전자피부(E-Skin) 촉각 센서 연구 동향

  • 고상민 (동일고무벨트 연구소 선행연구팀) ;
  • 김상균 (동일고무벨트 연구소) ;
  • 박다솜 (동일고무벨트 연구소 선행연구팀)
  • Published : 2023.12.31

Abstract

Keywords

References

  1. R. S. Johansson, G. Westling, "Role of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher of more slippery objects", Exp Brain Res, 56, 550(1984). https://doi.org/10.1007/BF00237997
  2. M. L. Hammock, A. Chortos, B. C. K. Tee, B. H. Tok, and Z. Bao, "The Evolution of Electronic Skin(E-Skin): A Brief History, Design Considerations, and Recent Progress", Adv. Mater., 25, 5997(2013).
  3. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. Laduca, R. Sarpeshkar, H. E. Katz, "Large-scale complementary integrated circuits based on organic transistors", Nature, 403, 521(2000). https://doi.org/10.1038/35000530
  4. X. Wang, L. Dong, H/ Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent Progress in Electronic Skin", Adv. Sci. 2, 1500169(2015) https://doi.org/10.1002/advs.201500169
  5. X. Cui, F. Huang, X. Zhang, P. Song, H. Zheng, V. Chevali, H. Wang, and Z. Xu, "Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications", iScience, 25, 104148(2022). https://doi.org/10.1016/j.isci.2022.104148
  6. W. Yuan, S. Dong, E. H. Adelson, "Gelsight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force", Sensors, 17, 2762(2017).
  7. Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song, J. pan, and Y. Shen, "Soft Magnetic Skin for Super-Resolution Tactile Sensing with Force Self-Decoupling", Sci. Robot., 6, eabc8801(2021). https://doi.org/10.1126/scirobotics.abc8801
  8. J. Y. Oh, D. H. Son, T. Katsumata, Y. J. Lee, Y. G. Kim, J. Lopez, H. C. Wu, J. H. Kang, J. S. Park, X. Gu, J. W. Mun, N. G. Wang, Y. Yin, Y. J. Yun, J. B. H. Yok, Z. Bao, "Stretchable Self-healable Semiconducting Polymer Film for Active-Matrix Strain-Sensing array", Sci. Adv., 5, eaav3097(2019). https://doi.org/10.1126/sciadv.aav3097
  9. X. Zang, X. Wang, Z. Yang, X. Wang, R. Li, J. Chen, J. Ji, and M. Xue, "Unprecedented Sensitivity Towards Pressure Enabled by Graphene Foam", Nanoscale, 9, 19346(2017). https://doi.org/10.1039/C7NR05175A
  10. J. Zhao, J. Luo, Z. Zhou, C. Zheng, J. Gui, J. Gao, R. Xu, "Novel multiwalled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor", Sensors and Actuators A: Physical, 323, 112658(2021).
  11. Z. Wang, X. Guan, H. Huang, H. Wang, W. Lin, and Z. Peng, "Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture", Adv. Funct. Mater., 29, 1807569(2019) https://doi.org/10.1002/adfm.201807569
  12. Q. Liu, Z. Liu, C. Li, K. Xie, P. Zhu, B. Shao, J. Zhang, J. Yang, J. Zhang, Q. Wang, and C. F. Guo, "Highly Transparent and Flexible Iontronic Pressure Sensors Based on an Opaque to Transparent Transition", Adv. Sci., 7, 2000348(2020).
  13. N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, and C. F. Guo, "Graded intrafillable architecture-based Iontronic Pressure Sensor with Ultra-broad-range High Sensitivity", Nature Communications, 11, 209(2020). https://doi.org/10.1038/s41467-019-14054-9
  14. Y. Wan, Z. Qiu, Y. Hong, Y. Wang, J. Zhang, Q. Liu, Z. Wu, and C. F. Guo, "A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures", Adv. Electron. Mater., 4, 1700586(2018). https://doi.org/10.1002/aelm.201700586
  15. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, and W. Yang, ¡°Cowpea-structured PVDF/ ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor Towards Remote Control of Gestures¡±, Nano Energy, 55, 516(2019). https://doi.org/10.1016/j.nanoen.2018.10.049
  16. D. Y. Park, D. J. Joe, D. H. Kim, H. W. Park, J. H. Han, C. K, Jeong, H. L. Park, J. G. Park, B. Y. Joung, and K. J. Lee, ¡°Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensor¡±, Adv. Mater., 29, 1702308(2017). https://doi.org/10.1002/adma.201702308
  17. E. Kar, N. Bose, B. Dutta, N. Mukherjee, and S. Mukherjee, "Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing", Appl. Mater. Interfaces, 11, 17501(2019). https://doi.org/10.1021/acsami.9b06452
  18. H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan, G. Zheng, J. Huang, K. Dai, C. Liu, and C. Shen, "Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high-performance strain sensor and stretchable triboelectric nanogenerator", Nano Energy, 76, 105035(2020).  https://doi.org/10.1016/j.nanoen.2020.105035
  19. S. W. Chun, W. K. Son, H. Y. Kim, S. K. Lim, C. H. Pang, and C. S. Choi, "Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin", Nano Lett., 8, 3305(2019). https://doi.org/10.1021/acs.nanolett.9b00922
  20. X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que, Z. Peng, H. Wang, and C. Pan,"A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Matallized Nanofibers for Wearable Electronics", Adv. Mater., 30, 1706738(2018). https://doi.org/10.1002/adma.201706738
  21. C. Chi, X. Sun, N. Xue, T. Li, C. Liu, "Recent Progress in Technologies for Tactile Sensors", Sensors, 18, 948(2018).  https://doi.org/10.3390/s18040948