DOI QR코드

DOI QR Code

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology

고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구

  • Eui-Chul Jeong (Department of Molding & Metal Forming R&D, Korea Institute of Industrial Technology) ;
  • Yong-Dae Kim (Department of Molding & Metal Forming R&D, Korea Institute of Industrial Technology) ;
  • Jeong-Won Lee (Department of Molding & Metal Forming R&D, Korea Institute of Industrial Technology) ;
  • Sung-Hee Lee (Department of Molding & Metal Forming R&D, Korea Institute of Industrial Technology)
  • 정의철 (한국생산기술연구원 금형성형연구부문) ;
  • 김용대 (한국생산기술연구원 금형성형연구부문) ;
  • 이정원 (한국생산기술연구원 금형성형연구부문) ;
  • 이성희 (한국생산기술연구원 금형성형연구부문)
  • Received : 2023.09.20
  • Accepted : 2023.09.30
  • Published : 2023.09.30

Abstract

The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임 ('20019244')

References

  1. X. Yuan, X. Liu, J. Zuo, "The development of new energy vehicles for a sustainable future: a review." Renew Sustain Energy Rev, Vol. 42, pp. 298-305, 2015. https://doi.org/10.1016/j.rser.2014.10.016
  2. M. Tromm, V. Shaayegan, C. Wang, H. Heim, C. Park, "Investigation of the mold-filling phenomenon in high-pressure foam injection molding and its effects on the cellular structure in expanded foams", Polymer, Vol. 160, pp.43-52, 2019. https://doi.org/10.1016/j.polymer.2018.11.006
  3. N. Petersen, P. Gatenholm, "Bacterial cellulose-based materials and medical devices: current state and perspectives", Appl. Microbiol. Biotechnol., Vol. 91, pp.1277-1286, 2011. https://doi.org/10.1007/s00253-011-3432-y
  4. A. Dufresne, "Nanocellulose: a new ageless bionanomaterial", Mater. Today Off., Vol. 16, No. 6, pp.220-227, 2013. https://doi.org/10.1016/j.mattod.2013.06.004
  5. D. Liu, X. Sun, H. Tian, S. Maiti, Z. Ma, "Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites", Cellulose, Vol. 20, No. 6, pp.2981-2989, 2013. https://doi.org/10.1007/s10570-013-0073-6
  6. C. Yang, G. Wang, J. Zhao, G. Zhao, A. Zhang, "Lightweight and strong glass fiber reinforced polypropylene composite foams achieved by mold-opening microcellular injection molding", Materials Research and Technology, Vol. 14, pp. 2920-2931, 2021. https://doi.org/10.1016/j.jmrt.2021.08.052
  7. S. Xu, D. Liu, Q. Zhang, Q. Fu, "Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix", Compos. Sci. Technol., Vol. 156, pp.117-126, 2018. https://doi.org/10.1016/j.compscitech.2017.12.017
  8. L. Wang, S. Ishihara, Y. Hikima, M. Ohshima, T. Sekiguchi, A. Sato, H. Yano, "Unprecedented development of ultrahigh expansion injection-molded poly- propylene foams by introducing hydrophobic-modified cellulose nanofibers", ACS Appl. Mater. Interfaces, Vol. 9 No. 11, pp.9250-9254, 2017. https://doi.org/10.1021/acsami.7b01329
  9. S. Veigel, G. Grull, S. Pinkl, M. Obersriebnig, U. Muller, W. Gindl-Altmutter, "Improving the mechanical resistance of waterborne wood coatings by adding cel- lulose nanofibers", React. Funct. Polym., Vol. 85, pp.214-220, 2014. https://doi.org/10.1016/j.reactfunctpolym.2014.07.020
  10. K. Dagnon, K. Shanmuganathan, C. Weder, S. Rowan, "Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices", Macromolecules, Vol. 45, No. 11, pp.4707-4715, 2012. https://doi.org/10.1021/ma300463y
  11. X. Xu, F. Liu, L. Jiang, J. Zhu, D. Haagenson, D. Wiesenborn, "Cellulose na- nocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents", ACS Appl. Mater. Interfaces, Vol. 5, No. 8, pp.2999-3009, 2013. https://doi.org/10.1021/am302624t
  12. M. Fukuya, K. Senoo, M. Kotera, M. Yoshimoto, O. Sakata, "Change in the crys- tallite orientation of poly(ethylene oxide)/cellulose nanofiber composite films", Biomacromolecules, Vol. 18, No. 12, pp.4411-4415, 2017. https://doi.org/10.1021/acs.biomac.7b01434
  13. K. Okada, S. Muroga, M. Ohshima, "FT-IR imaging as a new method to evaluate the dispersion of additives", Kobunshi Ronbunshu, Vol. 75, No. 2, pp.212-220. 2018. https://doi.org/10.1295/koron.2017-0075
  14. V. Kumar, N. Suh, "A process for making microcellular thermoplastic parts", Polym. Eng. Sci., Vol. 30, No. 20, pp.1323-1329, 1990. https://doi.org/10.1002/pen.760302010
  15. L.. Wang, Y. Hikima, M. Ohshima, T. Sekiguchi, H. Yano, "Evolution of cellular morphologies and crystalline structures in high-expansion isotactic polypropylene/ cellulose nanofiber nanocomposite foams", RSC Adv. Vol. 8, pp.15405-15416, 2018. https://doi.org/10.1039/C8RA01833B
  16. A. Ameli, D. Jahani, M. Nofar, P. Jung, C. Park, "Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties", Compos. Sci. Technol. Vol. 90, pp.88-95, 2014. https://doi.org/10.1016/j.compscitech.2013.10.019
  17. M. Stumpf, A. Sporrer, H. Schmidt, V. Altstadt, "Influence of supramolecular additives on foam morphology of injection-molded i-PP", J. Cell. Plast., Vol. 47, No. 6, pp.519-534, 2011. https://doi.org/10.1177/0021955X11408769