DOI QR코드

DOI QR Code

ShadowCam Instrument and Investigation Overview

  • 투고 : 2023.10.06
  • 심사 : 2023.11.23
  • 발행 : 2023.12.15

초록

ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

키워드

과제정보

We thank the many contractors who helped realize ShadowCam, John Guidi (NASA) and Chris Zavrel (NASA) for wise and efficient project oversight, and the KARI team for carrying us to the Moon on the amazing Danuri lunar orbiter.

참고문헌

  1. Acton CH Jr, Ancillary data services of NASA's navigation and ancillary information facility, Planet. Space Sci. 44, 65-70 (1996). https://doi.org/10.1016/0032-0633(95)00107-7
  2. Arnold JR, Ice in the lunar polar regions, J. Geophys. Res. Solid Earth. 84, 5659-5668 (1979). https://doi.org/10.1029/JB084iB10p05659
  3. Baker C, Cottingham C, Garrison M, Melak T, Peabody S, et al., Lunar Reconnaissance Orbiter (LRO) rapid thermal design development, in Heatpipes for Space Applications International Conference, Moscow, 15-18 Sep 2009.
  4. Barker MK, Mazarico E, Neumann GA, Smith DE, Zuber MT, et al., Improved LOLA elevation maps for south pole landing sites: error estimates and their impact on illumination conditions, Planet. Space Sci. 203, 105119 (2021). https://doi.org/10.1016/j.pss.2020.105119
  5. Beckman M, Mission design for the Lunar Reconnaissance Orbiter, in 29th Annual Advances in the Astronautical Sciences Guidance and Control Conference, Breckenridge, CO, USA, 4-8 Feb 2007.
  6. Beyer R, Alexandrov O, Balaban E, Colaprete A, Shirley M, et al., VIPER geospatial data for site selection and traverse planning, LPI Contrib. 2806, 2377 (2023).
  7. Bickel VT, Kring DA, Lunar south pole boulders and boulder tracks: implications for crew and rover traverses, Icarus 348, 113850 (2020). https://doi.org/10.1016/j.icarus.2020.113850
  8. Boynton WV, Droege GF, Mitrofanov IG, McClanahan TP, Sanin AB, et al., High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility, J. Geophys. Res. Planets 117, E00H33 (2012). https://doi.org/10.1029/2011JE003979
  9. Braden SE, Robinson MS, Relative rates of optical maturation of regolith on Mercury and the Moon, J. Geophys. Res. Planets 118, 1903-1914 (2013). https://doi.org/10.1002/jgre.20143
  10. Brown HM, Boyd AK, Denevi BW, Henriksen MR, Manheim MR, et al., Resource potential of lunar permanently shadowed regions, Icarus 377, 114874 (2022). https://doi.org/10.1016/j.icarus.2021.114874
  11. Bussey DBJ, Lucey PG, Steutel D, Robinson MS, Spudis PD, et al., Permanent shadow in simple craters near the lunar poles, Geophys. Res. Lett. 30, 1278 (2003). https://doi.org/10.1029/2002GL016180
  12. Bussey DBJ, McGovern JA, Spudis PD, Neish CD, Noda H, et al., Illumination conditions of the south pole of the Moon derived using Kaguya topography, Icarus 208, 558-564 (2010). https://doi.org/10.1016/j.icarus.2010.03.028
  13. Bussey DBJ, Spudis PD, Robinson MS, Illumination conditions at the lunar south pole, Geophys. Res. Lett. 26, 1187-1190 (1999). https://doi.org/10.1029/1999GL900213
  14. Campbell BA, High circular polarization ratios in radar scattering from geologic targets, J. Geophys. Res. Planets 117, E06008 (2012). https://doi.org/10.1029/2012JE004061
  15. Campbell DB, Campbell BA, Carter LM, Margot JL, Stacy NJS, No evidence for thick deposits of ice at the lunar south pole, Nature 443, 835-837 (2006). https://doi.org/10.1038/nature05167
  16. Chabot NL, Ernst CM, Denevi BW, Nair H, Deutsch AN, et al., Images of surface volatiles in Mercury's polar craters acquired by the MESSENGER spacecraft, Geology. 42, 1051-1054 (2014). https://doi.org/10.1130/G35916.1
  17. Chabot NL, Ernst CM, Paige DA, Nair H, Denevi BW, et al., Imaging Mercury's polar deposits during MESSENGER's low-altitude campaign, Geophys. Res. Lett. 43, 9461-9468 (2016). https://doi.org/10.1002/2016GL070403
  18. Chowdhury AR, Saxena M, Kumar A, Joshi SR, Amitabh, et al., Orbiter high resolution camera onboard Chandrayaan-2 orbiter, Curr. Sci. 117, 560-565 (2019). https://doi.org/10.18520/cs/v118/i4/560-565
  19. Christensen PR, Engle E, Anwar S, Dickenshied S, Noss D, et al., JMARS - a planetary GIS, in American Geophysical Union, Fall Meeting 2009, San Francisco, CA, 14-18 Dec 2009.
  20. Cintala MJ, McBride KM, Block distribution on the lunar surface: a comparison between measurements obtained from surface and orbital photography, NASA Technical Memorandum #104804 (NASA Johnson Space Center, Houston, 1995) 41.
  21. Clark RN, Detection of adsorbed water and hydroxyl on the Moon, Science 326, 562-564 (2009). https://doi.org/10.1126/science.1178105
  22. Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, et al., Detection of water in the LCROSS ejecta plume, Science 330, 463-468 (2010). https://doi.org/10.1126/science.1186986
  23. Dagar AK, Rajasekhar RP, Nagori R, Analysis of the permanently shadowed region of Cabeus crater in lunar south pole using orbiter high resolution camera imagery, Icarus 406, 115762 (2023). https://doi.org/10.1016/j.icarus.2023.115762
  24. De Rosa D, Bussey B, Cahill JT, Lutz T, Crawford IA, et al., Characterisation of potential landing sites for the European Space Agency's Lunar Lander project, Planet. Space Sci. 74, 224-246 (2012). https://doi.org/10.1016/j.pss.2012.08.002
  25. Deutsch AN, Head JW, Parman SW, Wilson L, Neumann GA, et al., Degassing of volcanic extrusives on Mercury: potential contributions to transient atmospheres and buried polar deposits, Earth Planet. Sci. Lett. 564, 116907 (2021). https://doi.org/10.1016/j.epsl.2021.116907
  26. Dundas CM, Byrne S, McEwen AS, Mellon MT, Kennedy MR, et al., HiRISE observations of new impact craters exposing Martian ground ice, J. Geophys. Res. Planets 119, 109-127 (2014). https://doi.org/10.1002/2013JE004482
  27. Elphic RC, Eke VR, Teodoro LFA, Lawrence DJ, Bussey DBJ, Models of the distribution and abundance of hydrogen at the lunar south pole, Geophys. Res. Lett. 34, L13204 (2007). https://doi.org/10.1029/2007GL029954
  28. Estes NM, Hanger CD, Licht AA, Bowman-Cisneros E, Lunaserv Web Map Service: history, implementation details, development, and uses, in 44th Lunar and Planetary Science Conference, The Woodlands, TX, 18-22 Mar 2013.
  29. Estes NM, Bowley K, Paris K, Bowman-Cisneros, E, High performance computing with Rector: implementation, operation, and development, in Planetary Data Workshop, Flagstaff, AZ, 25-29 Jun 2012.
  30. Feder J, NASA prepares to drill for the "Oil of Space", J. Pet. Technol. 73, 24-28 (2021). https://doi.org/10.2118/0421-0024-jpt
  31. Feldman WC, Maurice S, Binder AB, Barraclough BL, Elphic RC, et al., Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles, Science 281, 1496-1500 (1998). https://doi.org/10.1126/science.281.5382.1496
  32. Feldman WC, Lawrence DJ, Elphic RC, Barraclough BL, Maurice S, et al., Polar hydrogen deposits on the Moon, J. Geophys. Res. Planets 105, 4175-4195 (2000). https://doi.org/10.1029/1999JE001129
  33. Feldman WC, Maurice S, Lawrence DJ, Little RC, Lawson SL, et al., Evidence for water ice near the lunar poles, J. Geophys. Res. Planets 106, 23231-23251 (2001). https://doi.org/10.1029/2000JE001444
  34. Figuera RM, Riedel C, Rossi AP, Unnithan V, Depth to diameter analysis on small simple craters at the lunar south pole-possible implications for ice harboring, Remote Sens. 14, 450 (2022). https://doi.org/10.3390/rs14030450
  35. Fisher EA, Lucey PG, Lemelin M, Greenhagen B, Siegler M, et al., Search for lunar volatiles using the lunar orbiter laser altimeter and the diviner lunar radiometer, in 47th Lunar and Planetary Science Conference, The Woodlands, TX, 21-25 March 2016.
  36. Gladstone GR, Retherford KD, Egan AF, Kaufmann DE, Miles PF, et al., Far-ultraviolet reflectance properties of the Moon's permanently shadowed regions, J. Geophys. Res. Planets 117, E00H04 (2012). https://doi.org/10.1029/2011JE003913
  37. Glaser P, Haase I, Oberst J, Neumann GA, Co-registration of laser altimeter tracks with digital terrain models and applications in planetary science, Planet. Space Sci. 89, 111-117 (2013). https://doi.org/10.1016/j.pss.2013.09.012
  38. Glaser P, Sanin A, Williams JP, Mitrofanov I, Oberst J, Temperatures near the lunar poles and their correlation with hydrogen predicted by LEND, J. Geophys. Res. Planets 126, e2020JE006598 (2021). https://doi.org/10.1029/2020JE006598
  39. Glaser P, Scholten F, De Rosa D, Marco Figuera R, Oberst J, et al., Illumination conditions at the lunar south pole using high resolution digital terrain models from LOLA, Icarus 243, 78-90 (2014). https://doi.org/10.1016/j.icarus.2014.08.013
  40. Grier JA, McEwen AS, Lucey PG, Milazzo M, Strom RG, Optical maturity of ejecta from large rayed lunar craters, J. Geophys. Res. Planets 106, 32847-32862 (2001). https://doi.org/10.1029/1999JE001160
  41. Hapke B, Space weathering from Mercury to the asteroid belt, J. Geophys. Res. Planets 106, 10039-10073 (2001). https://doi.org/10.1029/2000JE001338
  42. Hapke B, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, Cambridge, England, 2012).
  43. Harmon JK, Slade MA, Radar mapping of Mercury: full-disk images and polar anomalies, Science 258, 640-643 (1992). https://doi.org/10.1126/science.258.5082.640
  44. Harmon JK, Slade MA, Rice MS, Radar imagery of Mercury's putative polar ice: 1999-2005 Arecibo results, Icarus 211, 37-50 (2011). https://doi.org/10.1016/j.icarus.2010.08.007
  45. Harmon JK, Slade MA, Velez RA, Crespo A, Dryer MJ, et al., Radar mapping of Mercury's polar anomalies, Nature 369, 213-215 (1994). https://doi.org/10.1038/369213a0
  46. Hartmann WK, Terrestrial, lunar, and interplanetary rock fragmentation, Icarus 10, 201-213 (1969). https://doi.org/10.1016/0019-1035(69)90022-0
  47. Haruyama J, Ohtake M, Matsunaga T, Morota T, Honda C, et al., Lack of exposed ice inside lunar south pole Shackleton crater, Science 322, 938-939 (2008). https://doi.org/10.1126/science.1164020
  48. Hayne PO, Aharonson O, Schorghofer N, Micro cold traps on the Moon, Nat. Astron. 5, 169-175 (2021). https://doi.org/10.1038/s41550-020-1198-9
  49. Hayne PO, Hendrix A, Sefton-Nash E, Siegler MA, Lucey PG, et al., Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements, Icarus 255, 58-69 (2015). https://doi.org/10.1016/j.icarus.2015.03.032
  50. Henriksen MR, Manheim MR, Burns KN, Seymour P, Speyerer EJ, et al., Extracting accurate and precise topography from LROC narrow angle camera stereo observations, Icarus 283, 122-137 (2017). https://doi.org/10.1016/j.icarus.2016.05.012
  51. Honniball CI, Lucey PG, Arredondo A, Reach WT, Malaret ER, Regional map of molecular water at high southern latitudes on the Moon using 6 ㎛ data from the Stratospheric Observatory for Infrared Astronomy, Geophys. Res. Lett. 49, e2022GL097786 (2022). https://doi.org/10.1029/2022GL097786
  52. Humm DC, Kinczyk MJ, Brylow SM, Wagner RV, Speyerer EJ, et al., Calibration of ShadowCam, J. Astron. Space Sci. 40, 173-197 (2023). https://doi.org/10.5140/JASS.2023.40.4.173
  53. Humm DC, Tschimmel M, Brylow SM, Mahanti P, Tran TN, et al., Flight calibration of the LROC Narrow Angle Camera, Space Sci. Rev. 200, 431-473 (2016). https://doi.org/10.1007/s11214-015-0201-8
  54. Ingersoll AP, Svitek T, Murray BC, Stability of polar frosts in spherical bowl-shaped craters on the Moon, Mercury, and Mars, Icarus 100, 40-47 (1992). https://doi.org/10.1016/0019-1035(92)90016-Z
  55. Koeber SD, Robinson MS, LROC observations of permanently shadowed regions on the Moon, in the 44th Lunar and Planetary Science Conference, The Woodlands, Texas, 18-22 Mar 2013.
  56. Koeber SD, Robinson MS, Speyerer EJ, LROC observations of permanently shadowed regions on the Moon, in the 45th Lunar and Planetary Science Conference, The Woodlands, Tx, Mar 17-21 2014.
  57. Kuiper GP, Interpretation of Ranger VII records, University of Arizona, Communications of the Lunar and Planetary Laboratory, Communications Nos. 58-59 (1965).
  58. Laferriere KL, Sunshine JM, Feaga LM, Variability of hydration across the southern hemisphere of the Moon as observed by Deep Impact, J. Geophys. Res. Planets 127, e2022JE007361 (2022). https://doi.org/10.1029/2022JE007361
  59. Li S, Lucey PG, Milliken RE, Hayne PO, Fisher E, et al., Direct evidence of surface exposed water ice in the lunar polar regions, Proc. Natl. Acad. Sci. 115, 8907-8912 (2018). https://doi.org/10.1073/pnas.1802345115
  60. Litvak ML, Mitrofanov IG, Sanin A, Malakhov A, Boynton WV, et al., Global maps of lunar neutron fluxes from the LEND instrument, J. Geophys. Res. Planets 117, E00H22 (2012). https://doi.org/10.1029/2011JE003949
  61. Livengood TA, Chin G, Sagdeev RZ, Mitrofanov IG, Boynton WV, et al., Moonshine: diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND), Icarus 255, 100-115 (2015). https://doi.org/10.1016/j.icarus.2015.04.004
  62. Lucey PG, Neumann GA, Riner MA, Mazarico E, Smith DE, et al., The global albedo of the Moon at 1064 nm from LOLA, J. Geophys. Res. Planets 119, 1665-1679 (2014). https://doi.org/10.1002/2013JE004592
  63. Lucey PG, Petro N, Hurley DM, Farrell WM, Prem P, et al., Volatile interactions with the lunar surface, Geochemistry 82, 125858 (2022). https://doi.org/10.1016/j.chemer.2021.125858
  64. Malin MC, Bell JF, Cantor BA, Caplinger MA, Calvin WM, et al., Context Camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res. Planets 112, E05S04 (2007). https://doi.org/10.1029/2006JE002808
  65. Mandt KE, Greathouse TK, Retherford KD, Randall Gladstone G, Jordan AP, et al., LRO-LAMP detection of geologically young craters within lunar permanently shaded regions, Icarus 273, 114-120 (2016). https://doi.org/10.1016/j.icarus.2015.07.031
  66. Martin TD, Atwell MJ, Bussey DBJ, Estes NM, Grott M, et al., S.P. Hopper: in-situ exploration of the Shackleton de Gerlache Ridge, in Lunar Exploration Analysis Group, Laurel, MD, 20-22 Sep 2023.
  67. Mazarico E, Neumann GA, Smith DE, Zuber MT, Torrence MH, Illumination conditions of the lunar polar regions using LOLA topography, Icarus 211, 1066-1081 (2011). https://doi.org/10.1016/j.icarus.2010.10.030
  68. McClanahan TP, Mitrofanov IG, Boynton WV, Chin G, Bodnarik J, et al., Evidence for the sequestration of hydrogen-bearing volatiles towards the Moon's southern pole-facing slopes, Icarus 255, 88-99 (2015). https://doi.org/10.1016/j.icarus.2014.10.001
  69. Miller RS, Lawrence DJ, Hurley DM, Identification of surface hydrogen enhancements within the Moon's Shackleton crater, Icarus 233, 229-232 (2014). https://doi.org/10.1016/j.icarus.2014.02.007
  70. Mitchell J, Lawrence S, Robinson M, Speyerer E, Denevi B, Using complementary remote sensing techniques to assess the presence of volatiles at the lunar north pole, Planet. Space Sci. 162, 133-147 (2018). https://doi.org/10.1016/j.pss.2017.07.015
  71. Mitrofanov I, Litvak M, Sanin A, Malakhov A, Golovin D, et al., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res. Planets 117, E00H27 (2012). https://doi.org/10.1029/2011JE003956
  72. Mitrofanov IG, Sanin AB, Boynton WV, Chin G, Garvin JB, et al., Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND, Science 330, 483-486 (2010). https://doi.org/10.1126/science.1185696
  73. NASA, Second Stand Alone Missions of Opportunity Notice (SALMON-2), National Aeronautics and Space Administration, NNH12ZDA006O
  74. NASA, Element Appendix (PEA) T: hosted payloads on Korea Pathfinder Lunar Orbiter (KPLO), National Aeronautics and Space Administration, NNH12ZDA006O-KPLO
  75. NASA Advisory Council, Lunar Science Workshop: NASA Advisory Council workshop on science associated with the Lunar Exploration Architecture (NASA, Washington, DC, 2007).
  76. National Academies of Sciences, Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (National Academies Press, Washington, DC, 2022).
  77. National Academy of Sciences, Vision and Voyages for Planetary Science in the Decade 2013-2022, (National Academies Press, Washington, DC, 2011).
  78. National Research Council, The Scientific Context for Exploration of the Moon (National Academies Press, Washington, DC, 2007).
  79. Neish CD, Bussey DBJ, Spudis P, Marshall W, Thomson BJ, et al., The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site, J. Geophys. Res. 116, E01005 (2011). https://doi.org/10.1029/2010JE003647
  80. Neumann GA, Cavanaugh JF, Sun X, Mazarico EM, Smith DE, et al., Bright and dark polar deposits on Mercury: evidence for surface volatiles, Science 339, 296-300 (2013). https://doi.org/10.1126/science.1229764
  81. Noda H, Araki H, Goossens S, Ishihara Y, Matsumoto K, et al., Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter, Geophys. Res. Lett. 35, L24203 (2008). https://doi.org/10.1029/2008GL035692
  82. Nozette S, Lichtenberg CL, Spudis P, Bonner R, Ort W, et al., The Clementine bistatic radar experiment, Science 274, 1495-1498 (1996). https://doi.org/10.1126/science.274.5292.1495
  83. Nozette S, Spudis PD, Robinson MS, Bussey DBJ, Lichtenberg C, et al., Integration of lunar polar remote-sensing data sets: evidence for ice at the lunar south pole, J. Geophys. Res. 106, 23253-23266 (2001). https://doi.org/10.1029/2000JE001417
  84. Paige DA, Siegler MA, Harmon JK, Neumann GA, Mazarico EM, et al., Thermal stability of volatiles in the north polar region of Mercury, Science 339, 300-303 (2013). https://doi.org/10.1126/science.1231106
  85. Paige DA, Siegler MA, Zhang JA, Hayne PO, Foote EJ, et al., Diviner Lunar Radiometer observations of cold traps in the Moon's south polar region, Science 330, 479-482 (2010). https://doi.org/10.1126/science.1187726
  86. Patterson GW, Stickle AM, Turner FS, Jensen JR, Bussey DBJ, et al., Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory, Icarus 283, 2-19 (2017). https://doi.org/10.1016/j.icarus.2016.05.017
  87. Pendleton YJ, Water on the Moon, Proc. Int. Astron. Union. 11, 402-406 (2015). https://doi.org/10.1017/S1743921316005652
  88. Pieters CM, Goswami JN, Clark RN, Annadurai M, Boardman J, et al., Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1, Science 326, 568-572 (2009). https://doi.org/10.1126/science.1178658
  89. Prem P, Artemieva NA, Goldstein DB, Varghese PL, Trafton LM, Transport of water in a transient impact-generated lunar atmosphere, Icarus 255, 148-158 (2015). https://doi.org/10.1016/j.icarus.2014.10.017
  90. Robinson MS, Brylow SM, Tschimmel M, Humm D, Lawrence SJ, et al., Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev. 150, 81-124 (2010). https://doi.org/10.1007/s11214-010-9634-2
  91. Sanin AB, Mitrofanov IG, Litvak ML, Malakhov A, Boynton WV, et al., Testing lunar permanently shadowed regions for water ice: LEND results from LRO, J. Geophys. Res. Planets 117, E00H26 (2012). https://doi.org/10.1029/2011JE003971
  92. Sargeant HM, Bickel VT, Honniball CI, Martinez SN, Rogaski A, et al., Using boulder tracks as a tool to understand the bearing capacity of permanently shadowed regions of the Moon, J. Geophys. Res. Planets 125, e2019JE006157 (2020). https://doi.org/10.1029/2019JE006157
  93. Schorghofer N, Gradual sequestration of water at lunar polar conditions due to temperature cycles, Astrophys. J. Lett. 927, L34 (2022). https://doi.org/10.3847/2041-8213/ac5a48
  94. Schorghofer N, Williams JP, Martinez-Camacho J, Paige DA, Siegler MA, Carbon dioxide cold traps on the Moon, Geophys. Res. Lett. 48, e2021GL095533 (2021). https://doi.org/10.1029/2021GL095533
  95. Shin S, Heo HP, Choi SW, The lunar terrain imager operations concepts, in 2018 SpaceOps Conference, Marseille, France, 28 May-1 June 2018.
  96. Shoemaker EM, Alderman JD, Borgeson WT, Carr MH, Lugn RV, et al., Progress in the analysis of the fine structure and geology of the lunar surface from the Ranger VIII and IX photographs, Ranger VIII and IX: part 2, experimenters' analyses and interpretations, California Institute of Technology, Jet Propulsion Lab, Technical Report 32-800 (1966).
  97. Shoemaker EM, Robinson MS, Eliason EM, The south pole region of the Moon as seen by Clementine, Science 266, 1851-1854 (1994). https://doi.org/10.1126/science.266.5192.1851
  98. Slade MA, Butler BJ, Muhleman DO, Mercury radar imaging: evidence for polar ice, Science 258, 635-640 (1992). https://doi.org/10.1126/science.258.5082.635
  99. Smith DE, Zuber MT, Jackson GB, Cavanaugh JF, Neumann GA, et al., The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission, Space Sci. Rev. 150, 209-241 (2010a). https://doi.org/10.1007/s11214-009-9512-y
  100. Smith DE, Zuber MT, Neumann GA, Lemoine FG, Mazarico E, et al., Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Res. Lett. 37, L18204 (2010b). https://doi.org/10.1029/2010GL043751
  101. Speyerer EJ, Boyd A, Mahanti P, Robinson MS, Denevi B, Illuminating the darkness: photometric analysis under diffuse lighting, in European Lunar Symposium, Padua, Italy, 27-29 Jun 2023.
  102. Speyerer EJ, Povilaitis RZ, Robinson MS, Thomas PC, Wagner RV, Quantifying crater production and regolith overturn on the Moon with temporal imaging, Nature 538, 215-218 (2016a). https://doi.org/10.1038/nature19829
  103. Speyerer EJ, Lawrence SJ, Stopar JD, Glaser P, Robinson MS, et al., Optimized traverse planning for future polar prospectors based on lunar topography, Icarus 273, 337-345 (2016b). https://doi.org/10.1016/j.icarus.2016.03.011
  104. Speyerer EJ, Robinson MS, Persistently illuminated regions at the lunar poles: ideal sites for future exploration, Icarus 222, 122-136 (2013). https://doi.org/10.1016/j.icarus.2012.10.010
  105. Speyerer EJ, Wagner RV, Robinson MS, Licht A, Thomas PC, et al., Pre-flight and on-orbit geometric calibration of the lunar reconnaissance orbiter camera, Space Sci. Rev. 200, 357-392 (2016c). https://doi.org/10.1007/s11214-014-0073-3
  106. Spudis PD, The Value of the Moon (Smithsonian Books, Washington, DC, 2016).
  107. Spudis PD, Bussey DBJ, Baloga SM, Butler BJ, Carl D, et al., Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission, Geophys. Res. Lett. 37, L06204 (2010). https://doi.org/10.1029/2009GL042259
  108. Spudis PD, Bussey DBJ, Baloga SM, Cahill JTS, Glaze LS, et al., Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar, J. Geophys. Res. Planet. 118, 2016-2029 (2013). https://doi.org/10.1002/jgre.20156
  109. Stefanov WL, Vanderbloemen LA, Lawrence SJ, The I4 Online Query Tool for Earth observations data, in International Space Station (ISS) Research and Development Conference, Boston, MA 7-9 Jul 2015.
  110. Sunshine JM, Farnham TL, Feaga LM, Groussin O, Merlin F, et al., Temporal and spatial variability of lunar hydration as observed by the Deep Impact Spacecraft, Science 326, 565-568 (2009). https://doi.org/10.1126/science.1179788
  111. Syal MB, Schultz PH, Riner MA, Darkening of Mercury's surface by cometary carbon, Nat. Geosci. 8, 352-356 (2015). https://doi.org/10.1038/ngeo2397
  112. Thomson BJ, Bussey DBJ, Neish CD, Cahill JTS, Heggy E, et al., An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar, Geophys. Res. Lett. 39, L14201 (2012). https://doi.org/10.1029/2012GL052119
  113. Trang D, Tonkham T, Filiberto J, Li S, Lemelin M, et al., Eruption characteristics of lunar localized pyroclastic deposits as evidenced by remotely sensed water, mineralogy, and regolith, Icarus 375, 114837 (2022). https://doi.org/10.1016/j.icarus.2021.114837
  114. Van der Bogert CH, Hiesinger H, Kruger T, McEwen AS, Dundas C, New evidence for target property influence on crater size-frequency distribution measurements, , in the 44th Lunar and Planetary Science Conference, The Woodlands, Texas, 18-22 Mar 2013.
  115. Virkki A, Muinonen K, Radar scattering by planetary surfaces modeled with laboratory-characterized particles, Icarus 269, 38-49 (2016). https://doi.org/10.1016/j.icarus.2016.01.011
  116. Watson K, Murray BC, Brown H, The behavior of volatiles on the lunar surface, J. Geophys. Res. 66, 3033-3045 (1961). https://doi.org/10.1029/JZ066i009p03033
  117. Wilcoski AX, Hayne PO, Landis ME, Polar ice accumulation from volcanically induced transient atmospheres on the Moon, Planet. Sci. J. 3, 99 (2022). https://doi.org/10.3847/PSJ/ac649c
  118. Yoldi Z, Pommerol A, Jost B, Poch O, Gouman J, et al., VISNIR reflectance of water ice/regolith analogue mixtures and implications for the detectability of ice mixed within planetary regoliths, Geophys. Res. Lett. 42, 6205-6212 (2015). https://doi.org/10.1002/2015GL064780
  119. Zhang JA, Paige DA, Cold-trapped organic compounds at the poles of the Moon and Mercury: implications for origins, Geophys. Res. Lett. 36, L16203 (2009). https://doi.org/10.1029/2009GL038614
  120. Zuber MT, Head JW, Smith DE, Neumann GA, Mazarico E, et al., Constraints on the volatile distribution within Shackleton crater at the lunar south pole, Nature 486, 378-381 (2012). https://doi.org/10.1038/nature11216