DOI QR코드

DOI QR Code

A Korean case of CTCF related neurodevelopmental disorders

  • Seong Ryeong Kang (Department of Pediatrics, Seoul National University Children's Hospital) ;
  • Soo Hyun Seo (Department of Laboratory Medicine, Seoul National University Bundang Hospital) ;
  • Kyunghoon Kim (Department of Pediatrics, Seoul National University Bundang Hospital) ;
  • Hee Bum Yang (Department of Surgery, Seoul National University Bundang Hospital) ;
  • Hye Ran Yang (Department of Pediatrics, Seoul National University Bundang Hospital) ;
  • Anna Cho (Department of Pediatrics, Seoul National University Bundang Hospital)
  • Received : 2023.07.05
  • Accepted : 2023.12.01
  • Published : 2023.12.31

Abstract

CCCTC-binding factor (CTCF) is a transcriptional regulator that binds to a complex DNA motif in various orientations and plays a crucial role in regulating gene expression, chromatin restructuring, and developmental processes. Mutations in the CTCF are associated with neurodevelopmental disorders. Here we report the first Korean case with a de novo heterozygous variant in the CTCF (c.1025G>A; p.Arg342His). She showed global developmental delay, failure to thrive, and dysmorphic face, which are phenotypes consistent with previous reports in the autosomal dominant intellectual developmental disorder 21 (MIM 615502). She also showed clinical features not previously reported, such as antral web and tracheobronchomalacia. Our case follows suit and expands understanding of this rare disorder by reporting common features and, on the other hand, unreported concomitant congenital anomalies.

Keywords

Acknowledgement

We extend our gratitude to the patient and her parents for their valuable contribution to this study.

References

  1. Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. Annu Rev Genomics Hum Genet 2014;15:269-93. https://doi.org/10.1146/annurev-genom-090613-094245
  2. Dehingia B, Milewska M, Janowski M, Pekowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022;23:e55146.
  3. Gregor A, Oti M, Kouwenhoven EN, Hoyer J, Sticht H, Ekici AB, et al. De novo mutations in the genome organizer CTCF cause intellectual disability. Am J Hum Genet 2013;93:124-31. https://doi.org/10.1016/j.ajhg.2013.05.007
  4. Konrad EDH, Nardini N, Caliebe A, Nagel I, Young D, Horvath G, et al. CTCF variants in 39 individuals with a variable neurodevelopmental disorder broaden the mutational and clinical spectrum. Genet Med 2019;21:2723-33. https://doi.org/10.1038/s41436-019-0585-z
  5. Hori I, Kawamura R, Nakabayashi K, Watanabe H, Higashimoto K, Tomikawa J, et al. CTCF deletion syndrome: clinical features and epigenetic delineation. J Med Genet 2017;54:836-42. https://doi.org/10.1136/jmedgenet-2017-104854
  6. Bastaki F, Nair P, Mohamed M, Malik EM, Helmi M, Al-Ali MT, et al. Identification of a novel CTCF mutation responsible for syndromic intellectual disability - a case report. BMC Med Genet 2017;18:68.
  7. Chen F, Yuan H, Wu W, Chen S, Yang Q, Wang J, et al. Three additional de novo CTCF mutations in Chinese patients help to define an emerging neurodevelopmental disorder. Am J Med Genet C Semin Med Genet 2019;181:218-25. https://doi.org/10.1002/ajmg.c.31698
  8. Meng L, Pammi M, Saronwala A, Magoulas P, Ghazi AR, Vetrini F, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr 2017;171:e173438.
  9. Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med 2016;18:696-704. https://doi.org/10.1038/gim.2015.148
  10. Willsey AJ, Fernandez TV, Yu D, King RA, Dietrich A, Xing J, et al. De novo coding variants are strongly associated with Tourette disorder. Neuron 2017;94:486-99.e9. https://doi.org/10.1016/j.neuron.2017.04.024
  11. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 2004;13:291-8. https://doi.org/10.1016/S1097-2765(04)00029-2
  12. Bushey AM, Dorman ER, Corces VG. Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 2008;32:1-9. https://doi.org/10.1016/j.molcel.2008.08.017