Acknowledgement
본 논문은 농촌진흥청 연구개발사업(과제번호: PJ016759032023)의 지원에 의해 이루어진 것임.
References
- Ban, H. Y., J. K. Beak, W. G. Sang, J. H. Kim and M. C. Seo. 2021: Estimation of the Lodging Area in Rice Using Deep Learning. Korea Journal of Crop Science 66(2), 105-111. (in Korean with English abstract)
- Bernier, G. and C. Perilleux. 2005: A physiological overview of the genetics of flowering time control. Plant Biotechnol. Journal 3, 3-16. doi: 10.1111/j.1467-7652.2004.00114.x
- Corbesier, L., C. Vincent, and S. Jang. 2007: FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827), 1030-1033. doi: 10.1126/science.1141752
- Desai, S. V., V. N. Balasubramanian, T. Fukatsu, S. Ninomiya and W. Guo: 2019. Automatic estimation of heading date of paddy rice using deep learning. Plant Methods 15, 76. https://doi.org/10.1186/s13007-019-0457-1
- Fukushima, K: 1980: Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics 36, 193-202 https://doi.org/10.1007/BF00344251
- Gulzar, Y., Y. Hamid, A. B. Alwan and L. Journaux. 2020: A Convolution Neural Network-Based Seed Classification. System Symmetry 12(12). doi:10.3390/sym12122018
- Hama, A., K. Tanaka, B. Chen and A. Kondoh. 2021. Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring. Journal of Agricultural Meteorology 77(3) DOI: 10.2480/agrmet.D-20-00047
- Hoshikawa, K. 1989: The growing rice plant. An anatomical monograph. Nobunkyo Tokyo. 238-239.
- Jang, H. and S. Cho: 2016 Automatic Tagging for Social images using Convolution Neural Networks. Korean Institute of Information Scientists and Engineers 43(1), 47-53. (in Korean with English abstract) https://doi.org/10.5626/JOK.2016.43.1.47
- Kim, M. H., K.D. Bu, and B. W. Lee. 2006: Yield Response to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Nitrogen Nutrition Status of Rice Plnat. Korea Journal of Crop Science 51(7), 571-583. (in Korean with English abstract)
- Kim, S. S., J. H. Lee, J. K. Nam, W. Y. Choi, N. H. Beak, H. G. Park, M. G. Choi, J. G. Kim and G. Y. Jung. 2005: Proper Harvesting Time for Imporving the Rice Quality in Honam Plain Area. Korea Journal of Crop Science 50(S), 62-68. (in Korean with English abstract)
- Lee, J. G., S. H. Jun, Y. W. Cho, H. N. Lee, G. B. Kim, J. B. Seo and N. K. Kim. 2017: Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiolgy 18(4), 570-584. https://doi.org/10.3348/kjr.2017.18.4.570
- Leonardo, M. M., T. J. Carvalho, E. Rezende, R. Zucchi and F. A. Faria. 2019: Deep Feature-based Classifiers for Fruit Fly Identification (Diptera: Tephritidae). Conference: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images. DOI:10.1109/SIBGRAPI.2018.00012
- Loomis, R. S. and D. J. Connor. 1992: Crop ecology: productivity and management in agricultural systems. Cambridge University Press Cambridge, 104-128.
- Luis, P and W. Jason: 2017: The Effectiveness of Data Augmentation in Image Classification using Deep Learning. Computer Vision and Pattern Recognition, arXiv:1712.04621
- Oh, Y. J. and K. H. Park, 1993. In : Low input sustainable crop production systems in Asia. Korean Journal of Crop Science symposium in Seoul National University, 125-139.
- Schmidhuber, J. 2014: Deep Learning in Neural Networks: An Overview. arXiv:1404.7828
- Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam. D. Parikh and D. Batra 2017: Grad-CAM: Visual Explantations from Deep Networks via Gradient-Based Localization. International Conference on Computer Vision, 22-29. doi:10.1109/ICCV.2017.74
- Sritarapipat, T., P. Rakwatin and T. Kasetkasem. 2014: Automatic Rice Crop Height Measurement Using a Field Server and Digital Image Processing. Sensors 14, 900-926. doi:10.3390/s140100900
- Soontranon, N., P. Srestasathiern and P. Rakwatin. 2015: Rice Crop Calendar Based on Phenology Analysis from Time-series Images. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology 12, 1-5. doi: 10.1109/ECTICon.2015.7207029
- Vishal, M. K., R. Saluja, D. Aggrawal, B. Banerjee, D. Raju, S. Kumar, V. Chinnusamy, R. N. Sahoo and J, Adinarayana: 2022. Leaf Count Aided Novel Framework for Rice (Oryza sativa L.) Genotypes Discrimination in Phenomics: Leveraging Computer Vision and Deep Learning Applications. Plant 11(19), 2663. https://doi.org/10.3390/plants11192663
- Yoshida, S. 1981: Fundamentals of rice crop science. IRRI, Los Banos, Laguna, Philippines. pp 269.
- Zhang, Y., Z. Su, W. Shen, R. Jia, J. Luan. 2016: Remote Monitoring of Heading Rice Growing and Nitrogen Content Based on UAV Images. International Journal of Smart Home 10(7), 103-114. https://doi.org/10.14257/ijsh.2016.10.7.11