DOI QR코드

DOI QR Code

Preservice Teachers' Beliefs about Integrating Artificial Intelligence in Mathematics Education: A Scale Development Study

  • Sunghwan Hwang (Department of Mathematics Education, Chuncheon National University of Education)
  • Received : 2023.12.04
  • Accepted : 2023.12.26
  • Published : 2023.12.31

Abstract

Recently, AI has become a crucial tool in mathematics education due to advances in machine learning and deep learning. Considering the importance of AI, examining teachers' beliefs about AI in mathematics education (AIME) is crucial, as these beliefs affect their instruction and student learning experiences. The present study developed a scale to measure preservice teachers' (PST) beliefs about AIME through factor analysis and rigorous reliability and validity analyses. The study analyzed 202 PST's data and developed a scale comprising three factors and 11 items. The first factor gauges PSTs' beliefs regarding their roles in using AI for mathematics education (4 items), the second factor assesses PSTs' beliefs about using AI for mathematics teaching (3 items), and the third factor explores PSTs' beliefs about AI for mathematics learning (4 items). Moreover, the outcomes of confirmatory factor analysis affirm that the three-factor model outperforms other models (a one-factor or a two-factor model). These findings are in line with previous scales examining mathematics teacher beliefs, reinforcing the notion that such beliefs are multifaceted and developed through diverse experiences. Descriptive analysis reveals that overall PSTs exhibit positive beliefs about AIME. However, they show relatively lower levels of beliefs about their roles in using AI for mathematics education. Practical and theoretical implications are discussed.

Keywords

Acknowledgement

This paper was written with support from the Ministry of Education's National University Support Project.

References

  1. AlKanaan, H. M. N. (2022). Awareness regarding the implication of artificial intelligence in science education among pre-service science teachers. International Journal of Instruction, 15(3), 895-912. https://doi.org/10.29333/iji.2022.15348a 
  2. Athanasiou, L., Mikropoulos, T. A., & Mavridis, D. (2019). Robotics interventions for improving educational outcomes: A meta-analysis. In Tsitouridou, M., A. Diniz, J., Mikropoulos, T. (Eds.), Technology and Innovation in Learning, Teaching and Education: First International Conference, TECH-EDU 2018, Thessaloniki, Greece, June 20-22, 2018, (pp. 91-102). Springer International Publishing. https://doi.org/10.1007/978-3-030-20954-4_7 
  3. Attwood, A. I., Bruster, B. G., & Bruster, B. G. (2020). An exploratory study of preservice teacher perception of virtual reality and artificial intelligence for classroom management instruction. Srate Journal, 29(2), 1-9. 
  4. Barkatsas, A. T., & Malone, J. (2005). A typology of mathematics teachers' beliefs about teaching and learning mathematics and instructional practices. Mathematics Education Research Journal, 17(2), 69-90. https://doi.org/10.1007/bf03217416 
  5. Bush, J. B. (2021). Software-based intervention with digital manipulatives to support student conceptual understandings of fractions. British Journal of Educational Technology, 52(6), 2299-2318. https://doi.org/10.1111/bjet.13139 
  6. Celik, I., Dindar, M., Muukkonen, H., & Jarvela, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. Tech Trends, 66(4), 616-630. https://doi.org/10.1007/s11528-022-00715-y 
  7. Choi, S., Jang, Y., & Kim, H. (2023). Influence of pedagogical beliefs and perceived trust on teachers' acceptance of educational artificial intelligence tools. International Journal of Human-Computer Interaction, 39(4), 910-922. https://doi.org/10.1080/10447318.2022.2049145 
  8. Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 1-9. https://doi.org/10.4135/9781412995627.d8 
  9. Cross, D. I. (2009). Alignment, cohesion, and change: Examining mathematics teachers' belief structures and their influence on instructional practices. Journal of Mathematics Teacher Education, 12(5), 325-346. https://doi.org/10.1007/s10857-009-9120-5 
  10. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008 
  11. DeVellis, R. F. (2017). Scale development theory and applications. SAGE. 
  12. Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn't). In S. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 135-151). Springer. https://doi.org/10.1007/978-3-319-17187-6_8 
  13. Francis, K., Rothschuh, S., Poscente, D., & Davis, B. (2021). Malleability of spatial reasoning with short-term and long-term robotics interventions. Technology, Knowledge and Learning, 27(3), 927-956. https://doi.org/10.1007/s10758-021-09520-7 
  14. Furinghetti, F., & Pehkonen, E. (2002). Rethinking characterizations of beliefs. In GC. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 39-57). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47958-3_3 
  15. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective. Pearson. https://doi.org/10.1007/978-3-030-06031-2_16 
  16. Haseski, H. I. (2019). What do Turkish pre-service teachers think about artificial intelligence?. International Journal of Computer Science Education in Schools, 3(2), 3-23. https://doi.org/10.21585/ijcses.v3i2.55 
  17. Hinkin, T. R. (1998). A brief tutorial on the development of measures for use in survey questionnaires. Organizational Research Methods, 1(1), 104-121. https://doi.org/10.1177/109442819800100106 
  18. Hwang, G. J., & Tu, Y. F. (2021). Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/10.3390/math9060584 
  19. Lee, D., & Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers & Education, 191, 104646. https://doi.org/10.1016/j.compedu.2022.104646 
  20. Li, M., Noori, A. Q., & Li, Y. (2023). Development and validation of the secondary mathematics teachers' TPACK scale: A study in the Chinese context. Eurasia Journal of Mathematics, Science and Technology Education, 19(11), em2350. https://doi.org/10.29333/ejmste/13671 
  21. Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 1-18. https://doi.org/10.1037/a0037123 
  22. Mangera, E., & Supratno, H. (2023). Exploring the relationship between transhumanist and artificial intelligence in the education context: Teaching and learning process at tertiary education. Pegem Journal of Education and Instruction, 13(2), 35-44. https://doi.org/10.47750/pegegog.13.02.05 
  23. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575-596). Macmillan. 
  24. MOE (2021). AI lessons at school. Author. 
  25. MOE (2022). 2022 revised mathematics curriculum. Author. 
  26. Moltudal, S., Hoydal, K. L., & Krumsvik, R. J. (2020). Glimpses into real-life introduction of adaptive learning technology: A mixed methods research approach to personalised pupil learning. Designs for Learning, 12(1), 13-28. https://doi.org/10.16993/dfl.138 
  27. MSICT (2019). National strategies for Artificial Intelligence. Author. 
  28. NCTM. (2014). Principles to actions: Ensuring mathematical success for all. Author. 
  29. Ndlovu, M., Ramdhany, V., Spangenberg, E. D., & Govender, R. (2020). Preservice teachers' beliefs and intentions about integrating mathematics teaching and learning ICTs in their classrooms. ZDM, 52, 1365-1380. https://doi.org/10.1007/s11858-020-01186-2 
  30. Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO. 
  31. Philipp, R. A. (2007). Mathematics teachers' beliefs and affect. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257-315). NCTM.
  32. Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014 
  33. Shin, D. J. (2020). An analysis prospective mathematics teachers' perception on the use of artificial intelligence in mathematics education. Communications of Mathematical Education, 34(3), 215-234. 
  34. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., & Reckase, M. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). International Association for the Evaluation of Educational Achievement. https://doi.org/10.1086/674063 
  35. Thurm, D., & Barzel, B. (2020). Effects of a professional development program for teaching mathematics with technology on teachers' beliefs, self-efficacy and practices. ZDM, 52, 1411-1422. https://doi.org/10.1007/s11858-020-01158-6 
  36. Thurm, D., & Barzel, B. (2022). Teaching mathematics with technology: A multidimensional analysis of teacher beliefs. Educational Studies in Mathematics, 109, 41-63. https://doi.org/10.1007/s10649-021-10072-x 
  37. Wang, Y. Y., & Chuang, Y. W. (2023). Artificial intelligence self-efficacy: Scale development and validation. Education and Information Technologies. Online first article. https://doi.org/10.1007/s10639-023-12015-w 
  38. Warfield, J., Wood, T., & Lehman, J. D. (2005). Autonomy, beliefs and the learning of elementary mathematics teachers. Teaching and Teacher Education, 21(4), 439-456. https://doi.org/10.1016/j.tate.2005.01.011 
  39. Yang, X., & Leung, F. K. (2015). The relationships among pre-service mathematics teachers' beliefs about mathematics, mathematics teaching, and use of technology in China. Eurasia Journal of Mathematics, Science and Technology Education, 11(6), 1363-1378. https://doi.org/10.12973/eurasia.2015.1393a 
  40. Yeo, S., Rutherford, T., & Campbell, T. (2022). Understanding elementary mathematics teachers' intention to use a digital game through the technology acceptance model. Education and Information Technologies, 27(8), 11515-11536. https://doi.org/10.1007/s10639-022-11073-w