References
- Bertolucci, B.L. (2012), "An experimental investigation of the grazing flow impedance duct at the University of Florida for acoustic liner applications", Ph.D. Dissertation, University of Florida.
- Bi, R., Liu, Z.S., Li, K. M., Chen, J. and Wang, Y. (2012), "Helmholtz resonator with extended neck and absorbing material", Appl. Mech. Mater., 141, 308-312. https://doi.org/10.4028/www.scientific.net/AMM.141.308.
- Cai, C. and Mak, C.M. (2018), "Acoustic performance of different Helmholtz resonator array configurations", Appl. Acoust., 130, 204-209. https://doi.org/10.1016/j.apacoust.2017.09.026.
- Chanaud, R.C. (1994), "Effects of geometry on the resonance frequency of Helmholtz resonators", J. Sound Vib., 178(3), 337-348. https://doi.org/10.1006/jsvi.1994.1490.
- COMSOL Multiphysics software (2020), Acoustics Module Users Guide.
- Dastourani, H. and Bahman-Jahromi, I. (2021), "Evaluation of aeroacoustic performance of a helmholtz resonator system with different resonator cavity shapes in the presence of a grazing flow", J. Aerosp. Eng., 34(5), 04021061. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001309.
- Dickey, N.S. and Selamet, A. (1996), "Helmholtz resonators: one-dimensional limit for small cavity lengthto diameter ratios", J. Sound Vib., 195(3), 512-517. https://doi.org/10.1006/jsvi.1996.0440.
- Guan, D., Zhao, D. and Ren, Z. (2020), "Aeroacoustic attenuation performance of a Helmholtz resonator with a rigid baffle implemented in the presence of a grazing flow", Int. J. Aerosp. Eng., 1-16. https://doi.org/10.1155/2020/1916239.
- Igali, D., Wei, D., Zhang, D. and Perveen, A. (2020), "A comparative analysis of sheeting die geometries using numerical simulations", Adv. Comput. Des., 5(2), 111-125. https://doi.org/10.12989/acd.2020.5.2.111.
- Ingard, U. (1953), "On the theory and design of acoustic resonators", J. Acoust. Soc. Am., 25(6), 1037-1061. https://doi.org/10.1121/1.1907235.
- Jing, X.D., Wang, Y.J., Du, L., Qiu, X.H. and Sun X.F. (2023), "Impedance eduction experiments covering higher frequencies based on the multimodal straightforward method", Appl. Acoust., 206, 109327. https://doi.org/10.1016/j.apacoust.2023.109327
- Langfeldt, F., Hoppen, H. and Gleine, W. (2020), "Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators", J. Sound Vib., 476, 115309. https://doi.org/10.1016/j.jsv.2020.115309.
- Li, Y., Wang, X. and Zhang, D. (2013), "Control strategies for aircraft airframe noise reduction", Chinese J. Aeronaut., 26(2), 249-260. https://doi.org/10.1016/j.cja.2013.02.001.
- Lu, Z., Pan, W. and Guan, Y. (2019), "Numerical studies of transmission loss performances of asymmetric Helmholtz resonators in the presence of a grazing flow", J. Low Freq. Noise V. A., 38(2), 244-254. https://doi.org/10.1177/1461348418817914.
- Ma, X. and Su, Z. (2020), "Development of acoustic liner in aero engine: A review", Sci. China Technol. Sci., 63(12), 1-14. https://doi.org/10.1007/s11431-019-1501-3.
- Mahesh, K., Kumar Ranjith, S. and Mini, R.S. (2021), "Inverse design of a Helmholtz resonator based lowfrequency acoustic absorber using deep neural network", J. Appl. Phys., 129(17), 174901. https://doi.org/10.1063/5.0046582.
- Mahesh, K. and Mini, R.S. (2021), "Investigation on the acoustic performance of multiple Helmholtz resonator configurations", Acoust. Australia, 49(2),355-69. https://doi.org/10.1007/s40857-021-00231-8.
- Meissner, M. (2002), "Excitation of Helmholtz resonator by grazing air flow", J. Sound Vib., 256(2), 382-388. https://doi.org/10.1006/jsvi.2001.4219.
- Rode, B.R. and Khare, R. (2021), "A review on development in design of multistage centrifugal pump", Adv. Comput. Des., 6(1), 43-53. https://doi.org/10.12989/acd.2021.6.1.043.
- Selamet, A. and Ji, Z.L. (2000), "Circular asymmetric Helmholtz resonators", J. Acoust. Soc. Am., 107(5), 2360-2369. https://doi.org/10.1121/1.428622.
- Selamet, A. and Lee, I. (2003), "Helmholtz resonator with extended neck", J. Acoust. Soc. Am., 113(4), 1975-1985. https://doi.org/10.1121/1.1558379.
- Selamet, A., Radavich, P.M., Dickey, N.S. and Novak, J.M. (1997), "Circular concentric Helmholtz resonators", J. Acoust. Soc. Am., 101(1), 41-51. https://doi.org/10.1121/1.417986.
- Selamet, E., Selamet, A., Iqbal, A. and Kim, H. (2011), "Effect of flow on Helmholtz resonator acoustics: a three-dimensional computational study vs. experiments", SAE Technical Paper., No. 2011-01-1521. https://doi.org/10.4271/2011-01-1521.
- Sugimoto, R., Murray, P. and Astley, R.J. (2012), "Folded cavity liners for turbofan engine intakes", Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, 2291.
- Wu, G., Lu, Z., Xu, X., Pan, W., Wu, W., Li, J. and Ci, J. (2019), "Numerical investigation of aeroacoustics damping performance of a Helmholtz resonator: Effects of geometry, grazing and bias flow", Aerosp. Sci. Technol., 86, 191-203. https://doi.org/10.1016/j.ast.2019.01.007.
- Qiu, X., Du, L., Jing, X. and Sun, X. (2019), "The Cremer concept for annular ducts for optimum sound attenuation", J. Sound Vib., 438, 383-401. https://doi.org/10.1016/j.jsv.2018.09.029
- Qiu, X., Xin, B., Wu, L., Meng, Y., Jing, X. (2018), "Investigation of straightforward impedance education method on single-degree-of-freedom acoustic liners", Chinese J. Aeronaut., 31(12), 2221-2233. https://doi.org/10.1016/j.cja.2018.08.014.
- Zhang, Z., Yu, D., Liu, J., Hu, B. and Wen, J. (2021), "Transmission and bandgap characteristics of a duct mounted with multiple hybrid Helmholtz resonators", Appl. Acoust., 183, 108266. https://doi.org/10.1016/j.apacoust.2021.108266.
- Zhang, Z., Zhao, D., Han, N., Wang, S. and Li, J. (2015), "Control of combustion instability with a tunable Helmholtz resonator", Aerosp. Sci. Technol., 41, 55-62. https://doi.org/10.1016/j.ast.2014.12.011.
- Zhao, D. (2011), "A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies", J. Acoust. Soc. Am., 129(3), 1184-1192. https://doi.org/10.1121/1.3533724
- Zhao, D. (2012), "Transmission loss analysis of a parallel-coupled Helmholtz resonator network", AIAA J., 50(6), 1339-1346. https://doi.org/10.2514/1.J051453
- Zhao, D., Ji, C. and Yin, M. (2022), "Experimental investigation of geometric shape effect of coupled Helmholtz resonators on aeroacoustics damping performances in presence of low grazing flow", Aerosp. Sci. Technol., 128, 107799. https://doi.org/10.1016/j.ast.2022.107799
- Zhao, D. and Morgans, A.S. (2009), "Tuned passive control of combustion instabilities using multiple Helmholtz resonators", J. Sound Vib., 320(4-5), 744-757. https://doi.org/10.1016/j.jsv.2008.09.006
- Zhao, X., Cai, L., Yu, D., Lu, Z. and Wen, J. (2017), "A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator", AIP Adv., 7(6), 065211. https://doi.org/10.1063/1.4989819.
- Ziliene, D., Stankunas, J. (2002), "Analysis of the influence of aircraft noise limitations following requirements of European Union on the sector of Lithuania air transport services", Aviation, 6, 34-40.