DOI QR코드

DOI QR Code

A new insight into design of acoustic liner arrays arrangement in the presence of a grazing flow

  • Hadi Dastourani (Department of Aeronautical Science & Technology, Khayyam Research Institute) ;
  • Iman Bahman-Jahromi (Department of Aeronautical Science & Technology, Khayyam Research Institute)
  • Received : 2022.03.15
  • Accepted : 2023.09.28
  • Published : 2023.10.25

Abstract

This study evaluated the acoustic performance of two configurations of serial HR arrays and lined HR arrays in the presence of grazing flow using a 3D numerical simulation. The dual, triple, and quad HR arrays were compared to the conventional HR array. The simulation results showed that the number of resonant frequencies increased with the number of serial HR arrays. The CTL did not significantly change with the number of serial HR arrays. The acoustic performance of the two, three, and four-lined HR arrays was compared to the conventional HR array. The results showed that the resonant frequency and TLmax increased with the number of lined HR arrays. The CTL also increased with the number of lined HR arrays. The effect of the grazing flow Mach number (Ma) was investigated on the four-lined HR array configuration and compared to the conventional HR configuration. TLmax and CTL decreased for both configurations with increasing Ma. The four-lined HR array configuration had significantly better acoustic performance than the conventional HR configuration. The TLmax and CTL increased by more than 300% when the configuration was changed from the conventional HR to the four-lined HR array at Ma = 0.The increment percentage decreased with increasing Ma.

Keywords

References

  1. Bertolucci, B.L. (2012), "An experimental investigation of the grazing flow impedance duct at the University of Florida for acoustic liner applications", Ph.D. Dissertation, University of Florida.
  2. Bi, R., Liu, Z.S., Li, K. M., Chen, J. and Wang, Y. (2012), "Helmholtz resonator with extended neck and absorbing material", Appl. Mech. Mater., 141, 308-312. https://doi.org/10.4028/www.scientific.net/AMM.141.308.
  3. Cai, C. and Mak, C.M. (2018), "Acoustic performance of different Helmholtz resonator array configurations", Appl. Acoust., 130, 204-209. https://doi.org/10.1016/j.apacoust.2017.09.026.
  4. Chanaud, R.C. (1994), "Effects of geometry on the resonance frequency of Helmholtz resonators", J. Sound Vib., 178(3), 337-348. https://doi.org/10.1006/jsvi.1994.1490.
  5. COMSOL Multiphysics software (2020), Acoustics Module Users Guide.
  6. Dastourani, H. and Bahman-Jahromi, I. (2021), "Evaluation of aeroacoustic performance of a helmholtz resonator system with different resonator cavity shapes in the presence of a grazing flow", J. Aerosp. Eng., 34(5), 04021061. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001309.
  7. Dickey, N.S. and Selamet, A. (1996), "Helmholtz resonators: one-dimensional limit for small cavity lengthto diameter ratios", J. Sound Vib., 195(3), 512-517. https://doi.org/10.1006/jsvi.1996.0440.
  8. Guan, D., Zhao, D. and Ren, Z. (2020), "Aeroacoustic attenuation performance of a Helmholtz resonator with a rigid baffle implemented in the presence of a grazing flow", Int. J. Aerosp. Eng., 1-16. https://doi.org/10.1155/2020/1916239.
  9. Igali, D., Wei, D., Zhang, D. and Perveen, A. (2020), "A comparative analysis of sheeting die geometries using numerical simulations", Adv. Comput. Des., 5(2), 111-125. https://doi.org/10.12989/acd.2020.5.2.111.
  10. Ingard, U. (1953), "On the theory and design of acoustic resonators", J. Acoust. Soc. Am., 25(6), 1037-1061. https://doi.org/10.1121/1.1907235.
  11. Jing, X.D., Wang, Y.J., Du, L., Qiu, X.H. and Sun X.F. (2023), "Impedance eduction experiments covering higher frequencies based on the multimodal straightforward method", Appl. Acoust., 206, 109327. https://doi.org/10.1016/j.apacoust.2023.109327
  12. Langfeldt, F., Hoppen, H. and Gleine, W. (2020), "Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators", J. Sound Vib., 476, 115309. https://doi.org/10.1016/j.jsv.2020.115309.
  13. Li, Y., Wang, X. and Zhang, D. (2013), "Control strategies for aircraft airframe noise reduction", Chinese J. Aeronaut., 26(2), 249-260. https://doi.org/10.1016/j.cja.2013.02.001.
  14. Lu, Z., Pan, W. and Guan, Y. (2019), "Numerical studies of transmission loss performances of asymmetric Helmholtz resonators in the presence of a grazing flow", J. Low Freq. Noise V. A., 38(2), 244-254. https://doi.org/10.1177/1461348418817914.
  15. Ma, X. and Su, Z. (2020), "Development of acoustic liner in aero engine: A review", Sci. China Technol. Sci., 63(12), 1-14. https://doi.org/10.1007/s11431-019-1501-3.
  16. Mahesh, K., Kumar Ranjith, S. and Mini, R.S. (2021), "Inverse design of a Helmholtz resonator based lowfrequency acoustic absorber using deep neural network", J. Appl. Phys., 129(17), 174901. https://doi.org/10.1063/5.0046582.
  17. Mahesh, K. and Mini, R.S. (2021), "Investigation on the acoustic performance of multiple Helmholtz resonator configurations", Acoust. Australia, 49(2),355-69. https://doi.org/10.1007/s40857-021-00231-8.
  18. Meissner, M. (2002), "Excitation of Helmholtz resonator by grazing air flow", J. Sound Vib., 256(2), 382-388. https://doi.org/10.1006/jsvi.2001.4219.
  19. Rode, B.R. and Khare, R. (2021), "A review on development in design of multistage centrifugal pump", Adv. Comput. Des., 6(1), 43-53. https://doi.org/10.12989/acd.2021.6.1.043.
  20. Selamet, A. and Ji, Z.L. (2000), "Circular asymmetric Helmholtz resonators", J. Acoust. Soc. Am., 107(5), 2360-2369. https://doi.org/10.1121/1.428622.
  21. Selamet, A. and Lee, I. (2003), "Helmholtz resonator with extended neck", J. Acoust. Soc. Am., 113(4), 1975-1985. https://doi.org/10.1121/1.1558379.
  22. Selamet, A., Radavich, P.M., Dickey, N.S. and Novak, J.M. (1997), "Circular concentric Helmholtz resonators", J. Acoust. Soc. Am., 101(1), 41-51. https://doi.org/10.1121/1.417986.
  23. Selamet, E., Selamet, A., Iqbal, A. and Kim, H. (2011), "Effect of flow on Helmholtz resonator acoustics: a three-dimensional computational study vs. experiments", SAE Technical Paper., No. 2011-01-1521. https://doi.org/10.4271/2011-01-1521.
  24. Sugimoto, R., Murray, P. and Astley, R.J. (2012), "Folded cavity liners for turbofan engine intakes", Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, 2291.
  25. Wu, G., Lu, Z., Xu, X., Pan, W., Wu, W., Li, J. and Ci, J. (2019), "Numerical investigation of aeroacoustics damping performance of a Helmholtz resonator: Effects of geometry, grazing and bias flow", Aerosp. Sci. Technol., 86, 191-203. https://doi.org/10.1016/j.ast.2019.01.007.
  26. Qiu, X., Du, L., Jing, X. and Sun, X. (2019), "The Cremer concept for annular ducts for optimum sound attenuation", J. Sound Vib., 438, 383-401. https://doi.org/10.1016/j.jsv.2018.09.029
  27. Qiu, X., Xin, B., Wu, L., Meng, Y., Jing, X. (2018), "Investigation of straightforward impedance education method on single-degree-of-freedom acoustic liners", Chinese J. Aeronaut., 31(12), 2221-2233. https://doi.org/10.1016/j.cja.2018.08.014.
  28. Zhang, Z., Yu, D., Liu, J., Hu, B. and Wen, J. (2021), "Transmission and bandgap characteristics of a duct mounted with multiple hybrid Helmholtz resonators", Appl. Acoust., 183, 108266. https://doi.org/10.1016/j.apacoust.2021.108266.
  29. Zhang, Z., Zhao, D., Han, N., Wang, S. and Li, J. (2015), "Control of combustion instability with a tunable Helmholtz resonator", Aerosp. Sci. Technol., 41, 55-62. https://doi.org/10.1016/j.ast.2014.12.011.
  30. Zhao, D. (2011), "A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies", J. Acoust. Soc. Am., 129(3), 1184-1192. https://doi.org/10.1121/1.3533724
  31. Zhao, D. (2012), "Transmission loss analysis of a parallel-coupled Helmholtz resonator network", AIAA J., 50(6), 1339-1346. https://doi.org/10.2514/1.J051453
  32. Zhao, D., Ji, C. and Yin, M. (2022), "Experimental investigation of geometric shape effect of coupled Helmholtz resonators on aeroacoustics damping performances in presence of low grazing flow", Aerosp. Sci. Technol., 128, 107799. https://doi.org/10.1016/j.ast.2022.107799
  33. Zhao, D. and Morgans, A.S. (2009), "Tuned passive control of combustion instabilities using multiple Helmholtz resonators", J. Sound Vib., 320(4-5), 744-757. https://doi.org/10.1016/j.jsv.2008.09.006
  34. Zhao, X., Cai, L., Yu, D., Lu, Z. and Wen, J. (2017), "A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator", AIP Adv., 7(6), 065211. https://doi.org/10.1063/1.4989819.
  35. Ziliene, D., Stankunas, J. (2002), "Analysis of the influence of aircraft noise limitations following requirements of European Union on the sector of Lithuania air transport services", Aviation, 6, 34-40.