DOI QR코드

DOI QR Code

Effects of the Recycled Waste Rope Fibers on the Strength and Carbonation Resistance of Cementitious Composites

폐로프 재활용 섬유보강 시멘트 복합체의 탄산화가 강도에 미치는 영향

  • Sanghwan Cho (Department of Civil Engineering, Seoul National University of Science and Tehnology) ;
  • Taek Hee Han (Ocean Space Development and Energy Research Department, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Min Ook Kim (Department of Civil Engineering, Seoul National University of Science and Tehnology)
  • 조상환 (서울과학기술대학교 건설시스템공학과) ;
  • 한택희 (한국해양과학기술원 해양공간개발.에너지연구부) ;
  • 김민욱 (서울과학기술대학교 건설시스템공학과)
  • Received : 2023.11.01
  • Accepted : 2023.11.13
  • Published : 2023.12.30

Abstract

In this study, a carbonation test was conducted on cementitious composites reinforced with recycled waste rope fibers (W series) according to EN 12390-12 standards. The test results were compared to those of commercially available polypropylene fibers (P series). In the carbonation test, both the carbonation depth and area were significantly influenced by the water-to-cement ratio. Notably, the carbonation resistance performance of cementitious composites containing waste rope fibers surpassed that of commercially available PP fibers under equivalent conditions. Throughout the 250-day test period, the W series exhibited higher compressive strength values than the P series, while both series displayed a similar trend of strength increase during the same duration. During the initial stage, the W series exhibited flexural strength levels similar to those of the P series. However, in the later stages, the P series showed a higher mean flexural strength by 1.0 MPa.

본 연구에서는 폐로프 재활용 섬유를 사용하여 보강된 시멘트 복합체(이하, W 시리즈)의 탄산화 시험을 EN 12390 규정에 따라 수행하고, 폴리프로필렌 기반 상용 보강재 (이하, P 시리즈)를 함유한 경우와 비교 분석하였다. 탄산화 시험 결과, 탄산화 깊이는 물시멘트비에 특히 큰 영향을 받았으며, 동일 조건에서 폐로프 보강재 함유 시멘트 복합체의 탄산화 저항성능이 상용 PP 계열 보강재를 혼입한 경우보다 다소 우수함을 확인하였다. 총 250일의 탄산화 시험 기간 동안, P시리즈와 W 시리즈 모두 압축강도가 증가하는 추세를 보였으나 W 시리즈의 평균 압축강도가 P 시리즈보다 다소 높은 것을 확인할 수 있었다. 또한, 시험 초기 단계에는 W 시리즈가 P 시리즈와 동일 수준의 휨강도를 얻었으나, 후반에는 P 시리즈가 평균 1.0 MPa 더 높은 휨강도를 보였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF-2021R1G1A1095265) 및 한국해양과학기술원 주요사업인 "해양쓰레기 재활용 항만 구조물 수명연장 기술 개발(과제번호 PEA0133)" 과제의 지원을 받아 수행한 연구로 이에 감사드립니다.

References

  1. Abdulridha, S.Q., Nasr, M.S., Al-Abbas, B.H., Hasan, Z.A. (2022). Mechanical and structural properties of waste rope fibers-based concrete: an experimental study, Case Studies in Construction Materials, 16, e00964.
  2. Bao, H., Yu, M., Chi, Y., Liu, Y., Ye, J. (2021). Performance evaluation of steel-polypropylene hybrid fiber reinforced concrete under supercritical carbonation, Journal of Building Engineering, 43, 103159.
  3. Caneda-Martinez, L., Frias, M., Sanchez, J., Rebolledo, N., Flores, E., Medina, C. (2022). Durability of eco-efficient binary cement mortars based on ichu ash: Effect on carbonation and chloride resistance, Cement and Concrete Composites, 131, 104608.
  4. Heo, S.U., Kim, J.H., Chung C.W. (2021). The effect of supercritical carbonation on quality improvement of recycled fine aggregate, Journal of Korean Recycled Construction Resources Institute, 9(1), 33-40 [in Korean].
  5. Hu, W., Zhang, D., Ftwi, E., Ellis, B.R., Li, V.C. (2023) Development of sustainable low carbon engineered cementitious composites with waste polyethylene fiber, sisal fiber and carbonation curing, Resources, Conservation and Recycling, 197, 107096.
  6. Jeon, B., Kim, H., Lee, S. (2018). Evaluation of the carbonation resistance and properties ternary blended concrete according to replacement ratio of blast furnace slag and fly ash, Journal of the Korean Concrete Institute, 30(1), 23-30 [in Korean]. https://doi.org/10.4334/JKCI.2018.30.1.023
  7. Joo, M.K., Jin, N.J., Yeon, K.S.(2002). Strength and durability of polymer-modified mortars using ground granulated blast-furnace slag, Journal of the Korean Concrete Institute, 14(2), 164-170 [in Korean]. https://doi.org/10.4334/JKCI.2002.14.2.164
  8. Lee, B., Lee J.S. (2022). Carbonation properties of ordinary concrete exposed for 15 years, Journal of Korean Recycled Construction Resources Institute, 10(3), 261-268 [in Korean].
  9. Lee, T.H., Kim, T.K., Choi, S.J., Kim, J.H.J. (2020). Evaluation of recycled aggregate concrete for freeze-thaw and carbonation resistance considering various curing conditions from climate change, Journal of the Korean Concrete Institute, 32(1), 3-10 [in Korean]. https://doi.org/10.4334/JKCI.2020.32.1.003
  10. Kim, M.O., Bordelon, A.C. (2015) Determination of total fracture energy for fiber-reinforced concrete, ACI Special Publication, 300, 1-16.
  11. Kim, M.O., Bordelon, A.C. (2016). Fiber effect on interfacial bond between concrete and fiber-reinforced mortar, Transportation Research Record: Journal of the Transportation Research Board, 2591(1), 11-18. https://doi.org/10.3141/2591-02
  12. Kim, M.O., Bordelon, A.C. (2017). Age-dependent properties of fiber-reinforced concrete for thin concrete overlays, Construction and Building Materials, 137, 288-299. https://doi.org/10.1016/j.conbuildmat.2017.01.097
  13. Kim, M.O., Bordelon, A.C., Lee, N.K. (2017). Early-age crack widths of thin fiber reinforced concrete overlays subjected to temperature gradients, Construction and Building Materials, 148, 492-503. https://doi.org/10.1016/j.conbuildmat.2017.05.099
  14. Nasr, M.S., Shubbar, A., Hashim, T.M., Abadel, A.A. (2023). Properties of a low-carbon binder-based mortar made with waste LCD glass and waste rope (nylon) fibers, Processes, 11(5), 1533.
  15. Oh, B., Lee, S., Lee, M., Jung, S. (2003). Influence of carbonation on the chloride diffusion in concrete, Journal of the Korean Concrete Institute, 15(6), 829-839 [in Korean]. https://doi.org/10.4334/JKCI.2003.15.6.829
  16. Pae, J., Kim, M.O., Han, T.H., Moon, J. (2022). Tomographic microstructural investigation of waste fishing net-reinforced high performance cementitious composites, Journal of Building Engineering, 56, 104829.
  17. Possan, E., Thomaz, W.A., Aleandri, G.A., Felix E.F., dos Santos, A.C.P. (2017). CO2 uptake potential due to concrete carbonation: a case study, Case Studies in Construction Materials, 6, 147-161. https://doi.org/10.1016/j.cscm.2017.01.007