DOI QR코드

DOI QR Code

A High-efficiency Buck-boost Half-bridge Inverter for Single-phase Photovoltaic Generation

단상 태양광 발전용 고효율 벅부스트 하프브리지 인버터

  • Hyung-Min Ryu (Dept. of Electrical Engineering, Dong-eui University)
  • Received : 2023.11.13
  • Accepted : 2023.12.13
  • Published : 2023.12.31

Abstract

Among single-phase photovoltaic inverters that can avoid excessive leakage current caused by the large parasitic capacitance of photovoltaic panels, a boost converter followed by a half-bridge inverter is the simplest and has the smallest leakage current. However, due to the high DC-link voltage, the rated voltage of the switching devices is high and the switching loss is large. This paper proposes a new circuit topology which can operate as a buck-boost inverter by adding two bidirectional switches to the output side of the half-bridge inverter instead of removing the boost converter. By reducing two stages of power conversion through the high-voltage DC-link to one stage, power loss can be reduced without increasing costs and leakage current. The feasibility of the proposed circuit topology is verified by computer simulation and power loss calculation.

태양광 패널의 큰 기생 커패시턴스에 기인하는 과도한 누설 전류를 피하기 위한 단상 태양광 인버터 중에 부스트 컨버터와 하프브리지 인버터를 종속적으로 결합하는 방식은 가장 단순하면서 누설 전류가 가장 작다. 하지만 직류단 전압이 높아 스위칭 소자의 정격 전압이 높고 스위칭 손실이 크다. 본 논문은 부스트 컨버터를 제거하는 대신에 하프브리지 인버터의 출력 측에 2개의 양방향 스위치를 추가함으로써 벅부스트 인버터로 동작할 수 있는 새로운 회로 토폴로지를 제안한다. 고전압 직류단을 거치는 두 단계의 전력 변환을 한 단계로 줄인 덕분에 전력 손실을 절감할 수 있으며 비용 및 누설 전류는 증가하지 않는다. 제안된 회로 토폴로지의 타당성은 컴퓨터 시뮬레이션 및 전력 손실 계산을 통해 검증한다.

Keywords

References

  1. O. Lopez et al., "Eliminating ground current in a transformerless photovoltaic application," IEEE Trans. Energy Convers., vol.25, no.1, pp. 140-147, 2010. DOI: 10.1109/TEC.2009.2037810
  2. Safety of power converters for use in photovoltaic power systems-Part 2: Particular requirements for inverters, IEC 62109-2, 2011.
  3. H. Schmidt et al., "Inverter for transforming a DC voltage into an AC current or an AC voltage," Europe Patent 1369985 A2, 2003.
  4. R. Gonzalez et al., "Transformerless inverter for single-phase photovoltaic systems," IEEE Trans. Power Electron., vol.22, no.2, pp.693-697, 2007. DOI: 10.1109/TPEL.2007.892120
  5. M. Victor et al., "Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic source of direct current voltage, into an alternating current voltage," U.S. Patent 7411802, 2008.
  6. R. Gonzalez et al., "Transformerless single-phase multilevel-based photovoltaic inverter," IEEE Trans. Ind. Electron., vol.55, no.7, pp.2694-2702, 2008. DOI: 10.1109/TIE.2008.924015
  7. W. Li et al., "Topology review and derivation methodology of single-phase transformerless photovoltaic inverters for leakage current suppression," IEEE Trans. Ind. Electron., vol.62, no.7, pp.4537-4551, 2015. DOI: 10.1109/TIE.2008.924015
  8. H. Li et al., "An improved H5 topology with low common-mode current for transformerless PV grid-connected inverter," IEEE Trans. Power Electron., vol.34, no.2, pp.1254-1265, 2019. DOI: 10.1109/TPEL.2018.2833144
  9. A. A. Khan et al., "Novel transformerless buck-boost inverters without leakage current," IEEE Trans. Ind. Electron., vol.67, no.12, pp.10442-10454, 2020. DOI: 10.1109/TIE.2019.2962478
  10. Korea New Renewable Energy Center (KNREC), NR-PV 501, http://www.knrec.or.kr.