
Ⅰ. Introduction

PID controllers has been actively studied in the 

past recent years till date [1-5] in the field of 

Control engineering for example in most automatic 

process control applications to regulate flow, 

temperature, pressure, level, and many other 

industrial process variables. In [2], they propose a 

multiobjective approach to design PID controllers 

organized into three parts. Part one describes 

the methods for the computation of the complete 

set of PID controllers stabilizing a given SISO 

linear timeinvariant plant. Part two proceeds to 

search for achievable performance for the closed- 

loop system under PID control. Finally, Part III 

adresses the optimization-based design of PID 

controllers for both continuous and discrete-time 

systems is considered. In [3], basic frequency 

analysis and the analysis of feedback systems is 

explianed. The PID law is often viewed as a 

simplistic computational control algorithm. However 

just like all non-convex optimization problems, 

tuning the PID algorithm for accurate and stable 

closed-loop control becomes a NP-Hard Problem. 

This leads to a dilemma, for both users and 

designers, most especially in practise as seen in [4]. 

And also, for people to understand the command 

of PID controllers in different application, the 

review of PID control in [5] is focused on the 

classical and modern optimization rules used for 

PID tuning integrated to intelligent control. Stability 

is a basic requirement, but beyond that, different 

systems have different behavior, different applications 

have different requirements, and requirements 
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may conflict with one another.

In this paper, the main aim is to achieve a good 

robust tracking performance of the proposed 

controller by providing a simplified systematic 

gain design method using frequency response 

analysis in the presence of some parameter 

uncertainties. First we utilize the state-space 

equation of the DC motors (MAXON DC motors, 

RE35(11879)) of [6] by finding its Laplace 

transform. Note that our considered DC motor is 

used as actuators at the joints of a humanoid 

robot such as leg, arm joints, etc. Then, with 

available information of nominal parameters, we 

obtain a PID controller with a gain-scaling factor 

  > 0. Finally by trial and error, we vary the 

disturbance value to observe the effect of   > 0 on 

steady-state error, damping ratio and overshoot. 

In summarized simulation results, we show that 

our control scheme and system analysis agree 

with the simulation results.

Ⅱ. System dynamics of dc motor

The DC motors (MAXON DC motors, RE35(11879)) 

dynamics from [7] is expressed as 

 


 



  


 
   (1)

where  is the position of the link,  is the 

torque constant,  is the motor inertia,  is 

the damping coefficient,  is the back emf 

constant,  is the armature resistance,  is the 

gear ratio,  is the load torque in voltage 

which is usually estimated using control schemes 

which use the additional load torque estimator 

[8,9] and nonlinear observer [10] instead of using 

the PID control scheme.

Our control goal is to regulate  to a (piece- 

wise) constant reference signal . Multiplying 

(1) above by , we have

      (2)

where

 

 
  


   



.

Practically, we consider that there are some 

parameter uncertainties in  and  such that 

   and    where  and   denote 

nominal parts and  and  denote any possible 

uncertain values. We assume that max

  , that is up to  parameter uncertainties 

are allowed in general. Taking into consideration 

that  itself is considered as an uncertainty, 

there is no requirement of setting uncertainty in 

. So, we rewrite (2) as

          (3)

Taking the Laplace transform of (3), we have

 
 


 

 


 (4)

which can therefore be expressed in a block 

diagram along with a feedback controller  as

Figure 1. Feedback control scheme of a DC motor.

Control objectives

1. Propose an ϵ−PID controller for DC motors 

to improve it’s settling time and reduce 

overshoot in the presence of some uncertain 

parameters.

2. Propose the design steps based on system 

analysis to help us to choose the control 

parameters (      ).

3. Prove using both frequency response analysis 

and simulation that the steady-state error is 

directly proportional to the gain-scaling 

factor.
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Ⅲ. Proposed controller and system analysis 

based on frequency response analysis

3.1  -PID controller

With available information of nominal parameters, 

the following −PID controller with a gain -scaling 

factor      is proposed in [7]

     (5)

where

 

 , (6)

 

 , (7)

  


 


. (8)

In [7], the robust stability and control performance 

aspects of (5) are addressed in a state-space 

framework by using Lyapunov stability analysis. 

In this paper, we try to explore these aspects by 

using more classical control methods such as 

root-locus method. From Fig. 1, we obtain

 
  


 


  


. (9)

Inserting (5) into (9), we have

 

     

   



    




(10)

where the disturbance parameter   .

From (10) and Fig. 1, the followings are 

observed:

1. When   is selected to be much less than , 

the characteristic equation is approximated 

to be

       

(11)

2. Suppose that    for a while. Then, (11) 

becomes

      . (12)

3. Using the Routh-array method [3], (12) 

becomes a Hurwitz polynomial when

        . (13)

The condition (13) can be easily met if 

      is a Hurwitz polynomial. 

Now, applying Routh-array method to (11), 

we can easily see that (11) is a Hurwitz 

polynomial for all    whenever (12) is a 

Hurwitz polynomial.

4. Assuming that  remains bounded, namely, 

the controlled system is stable, from (10), 

we can immediately see that when   is 

selected to be much less than 1, the effect 

caused by  is significantly reduced by 

an order of . Thus, the robustness against 

uncertain load torque is achieved by a 

gain-scaling factor  .

3.2 Analysis and design of  -PID controller for 

DC motor control with parameter uncertainty

In order to check the classical control performance 

specifications such as overshoot and settling 

time, the root-locus approach can be used. 

Taking  from (10) as

 
   −  

 −  


(14)

The characteristic equation under  ≪  is

      . (15)

Diving (15) by , we get

 


 




 




 . (16)
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Letting    in (16),

     .  (17)

Equation (17) is stable via the Routh-Hurwitz 

stability criteria if and only if the following is 

attained

max


  

which gives us allowable range of  once     

are selected.

When    (no uncertainty) and   , we set

        
 (18)

     
  

 (19)

where    ≤  and  ≫ .

The effect of the third pole is desired to be 

negligible since we want to make the behaviour 

of the proposed controller to be governed by 

dominant poles. Therefore  ≫ . By comparing 

both sides of equation (19), we obtain

   
  ,

  
  ,

     ,

thus,  and  are determined, once     are 

selected.

However, due to the uncertainty , the nominal 

 and  will be changed when a nonzero  

occurs (within the allowable range). In this case, 

from (17) and (19), we set

   
 , (20)

  
 , (21)

   . (22)

Since  ≫ ,

  . (23)

Inserting (23) into (20) and we can get

  





 





 





, (24)

 

 




  . (25)

Thus, assuming  ≫ ,  only affects .

Consider the table below which shows the 

robustness against . The following sets of 

(   ) are used for eqn (32) and the table 

below is obtained.

• Set 1:  = 8,  = 6,  = 7,

• Set 2:  = 5,  = 9,  = 4,

• Set 3:  = 1,  = 1,  = 1,

Table 1. Selected  for set 1, 2, and 3

Set 1() Set 2() Set 3()

  0.48 0.397 -0.5

   0.55 0.451 0

   0.57 0.469 0.17

The overshoot ((%)) is expressed as

  






. (26)

So, in set 1 when   for   , its 

corresponding overshoot is

    




 .

Similarly, in sets 2 and 3 for    and 

  respectively,

        .

The followings are some observations made 

from the table above

1. Set 1 is more robust against . Even though 

the difference is not that much, we get less 

overshoot and less change in damping ratio.

2. Set 2 is worse than Set 1 in terms of damping 

ratio.

3. Set 3 is not robust against . Therefore it 

should be avoided since it is unstable.

( 394 )
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So, from the aforementioned analysis and 

summarized table, we are led to select a good 

set of values for     as an initial step.

Ⅳ. Robust effects of the PID controller 

gains (     ) and the gain-scaling 

factor ( ) in the frequency domain

4.1 Effects of       against disturbance, 

In order to observe this, the root-locus technique 

has been used where two cases are considered 

for two sets of [   ] values with respect to   

when    in the same scale as shown below.

Figure 2. Root-loci of   with (case 1) [   ]= 

[8, 6, 7] and (case 2) [   ]=[5, 9, 4] when 

   as  decreases from 1 to 0.

From Fig. 2,  and  represent the angles 

between the pole locations in the real and 

imaginary sides where

  sin and   sin.

Therefore as the gap-size gets wider, its 

performance reduces and the damping ratio 

increases. For this reason, case 1 with smaller 

gap-size exhibits better performance since it has 

larger damping ratio and as a result less overshoot.

4.2 Effect of   on damping-ratio

Here, we are showing the pole locations for 

the same values of [   ] with respect to   

but by varying  values from -0.5 to 0.5.

Figure 3. Root-loci of   when [   ]=[8, 6, 7] 

as =[-0.5, 0, 0.5] with respect to  .

From Fig. 3 above, as   decreases from 1 to 0, 

 increases and therefore  decreases when  

is incremented irrespective of [   ] values. 

Also, it can be observed that   has no effect on 

the damping ratio as a result no effect on 

overshoot in the presence disturbance ().

4.3 Effect of   on steady-state error

In the unity feedback control diagram with 

unit-step input for which   , the appli- 

cation of the final value theorem to the error 

formula with respect to   is expressed as

  lim
→

. (27)

Let  be a lamp function which is  and 

(9) becomes

 





  

  








  

 







. (28)

Inserting (28) into (27) gives

  lim
→







  

  







lim
→







  

 







. (29)
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Put      into (29) and 

the first part of the equation is eliminated as 

→. Then, (29) becomes

  lim
→






 
















 




 








(30)

  lim
→






  

















 




 





(31)

 



. (32)

As a result, (32) represents the relationship 

between steady-state error () and the gain 

scaling factor ( ).

4.3.1 Observation

• The table above shows that   is directly 

proportional to  . As   increases,   also 

increases and vice-versa. So, the disturbance 

effect caused by the step function  from 

Fig.1 can be reduced by  . Thus, robustness 

against uncertain load torque is also achieved.

• Also, as   decreases, the angular frequency, 

 increases as a result settling time,  

decreases.

Ⅴ. Summary of the analysis and design rule

1. Select     such that       

is a Hurwitz polynomial which provides a 

way of robust design in the presence of 

input uncertainty ( term). Recall that 

  .

2. Since   is in the range of (0,1) such that 

 ≪ . Recall that the disturbance effect 

caused by  can be reduced in O(). 

The selection of   provides a way to robustly 

attenuate the parameter uncertainty and the 

unknown load torque. However, there is a 

practical limitation as noted in [2] that   

should not be smaller than its saturation 

level.

3. Since we want to make the behavior of the 

proposed controller to be governed by 

dominant poles, the effect of the third pole 

should be negligible. So,  and  are 

determined once     are selected. Recall 

that  does not affect the overshoot much 

whereas it mainly affects  and .

Ⅵ. Simulation Results

First, we consider the system parameter values 

from [10] where   Kgm2,   , 

  ,   × Nms,   Nm/A 

and   Vs.

6.1 Control result when the PID gains       

with no Disturbance

Five cases of the PID gains     have been 

taken into consideration with   equal to unity. 

The measured output response  is observed 

as shown in Fig. 4 below. The reference position 

 is set to 50°.

Figure 4. Control results with various values of     

when    with no disturbance.

The table below provides the summarized results.

In Fig. 4, we observe that:

• Selection 2 has the lowest overshoot() and 
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fast response (fast settling time, ). This is 

considered to be the most robust system 

(best case).

• Selections 4 has the highest amount of 

overshoot with faster responses,  is smaller.

• Lastly, selections 1 and 3 have little amount 

of overshoot and slower responses,  is 

larger.

Table 2. Summary of Overshoot and Settling-time for all 

the selected PID parameters

Selections       (%)  (sec)

1 24, 5, 10 7.23 7.6

2 29, 5, 10 5.63 6.88

3 24, 5, 12 7.88 8.54

4 24, 7, 10 9.68 6.59

6.2 Control result when considering the Uncertainties 

  and  

In the figure below, we can see the deviations 

that occur when selecting various sets of PID 

gains. This observation corresponds to our first 

controller design rule which explains how to 

select    . Consider the transfer function in 

(14), computing the root-locus and we obtain the 

deviations below for several selections of    .

Figure 5. Root loci of   with various selections of 

    with disturbance when     

6.3 Control result with respect to Disturbance

In this subsection, we want to prove that   is 

directly proportional to  even when disturbance 

is present in our control system. This, therefore, 

coincides with (32). For our control system to be 

a robust system, we want no more than 10% of 

uncertainty. Consider the following control results. 

As expected,  become smaller as   is reduced.

Figure 6. Control results with decreasing values of  

with    =[29, 5, 10] (selection 2).

Also, from Fig. 6, we can compare our -PID 

method with traditional PID controller(=1) [1]. 

The results show the validity of -PID method.

Ⅶ. Conclusion

This paper consists of achieving a good robust 

tracking performance of the proposed controller 

by providing a simplified systematic gain design 

method using frequency response analysis in the 

presence of some parameter uncertainties. We 

started by utilizing the state-space equation of 

the DC motors (MAXON DC motors, RE35(11879)) 

of [2] by finding its Laplace transform. Then with 

available information on nominal parameters, we 

obtain a PID controller with a gain-scaling factor 

  . Finally, we varied the disturbance value to 

observe the effect of    on steady-state error, 

damping ratio, and overshoot. Notably, our control 

scheme with analysis and the simulation results 

are in clear agreement.
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