DOI QR코드

DOI QR Code

Optimization for Preparation of Malic acid-catalyzed Ginsenoside Rg3 by Response Surface Methodology

반응 표면 분석법을 이용한 홍삼 사포닌으로부터의 사과산 활용 진세노사이드 Rg3 전환 최적화

  • Received : 2023.11.23
  • Accepted : 2023.12.11
  • Published : 2023.12.30

Abstract

Malic acid-catalyzed transformation has been developed to produce ginsenoside Rg3 which is increasingly in demand as a functional ingredient. The optimization of the conversion of red ginseng saponin (RGS) to ginsenoside Rg3 by acid catalyzed transformation was carried out using Box-Behnken design (BBD) based on Response Surface Analysis (RSM). The main independent variables were malic acid concentration, temperature, and reaction time. Conversion of ginsenoside Rg3 was performed according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rg3 ranged from 1.548 mg/L to 4.558 mg/L, and the highest production was obtained under the condition of reacting 1% malic acid, 50 ℃ and 9h. Consequently, The independent variables affecting the production of ginsenoside Rg3 were identified in the following order: malic acid concentration, reaction time and temperature. In addition, it was confirmed that the interaction between malic acid concentration and reaction time had a greater influence than the temperature.

최근 다양한 피부 기능 개선 효과로 기능성 소재로서 활용도가 높은 홍삼 사포닌의 한 종류인 진세노사이드 Rg3를 위한 사과산(malic acid)활용 전환 방법을 확인하였다. 실험 계획법인 반응 표면 분석법(RSM)을 활용하여 진세노사이드 Rg3로의 전환에 영향을 주는 요인을 최적화하기 위한 실험 조건을 설계 및 검증하였다. 주요 독립변수는 사과산 농도, 반응 온도와 반응 시간이었고 Box-Behnken design (BBD)법에 따라 설계된 실험 조건으로 진세노사이드 Rg3로 전환을 수행하고 최적화 조건을 분석하였다. 전환된 진세노사이드 Rg3의 농도는 1.548 mg/L에서 최대 4.558 mg/L까지 확인되었고 사과산 1%, 50℃, 9 h에서 가장 높은 양의 진세노사이드 Rg3생성량을 보였다. 결론적으로, 진세노사이드 Rg3의 생성에 가장 영향을 미치는 요인은 사과산의 농도, 반응 시간, 온도 순이었다. 또한, 사과산의 농도와 반응 시간의 교호작용이 반응 온도 요인보다 영향도가 큰 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2022)지원을 받아 작성되었음.

References

  1. L. P. Christensen, Ginsenosides chemistry, biosynthesis, analysis, and potential health effects, Adv. Food Nutr. Res., 55, 1 (2009).
  2. H. Nabata, H. Saito, and K. Takagi, Pharmacological studies of neural saponins (GNS) of Panax ginseng root, Jpn. J. Pharmacol., 23(1), 29 (1973).
  3. Y. S. Chan g, E. K. Seo, C. Gyllen haal, an d K. I. Block, Panax ginseng: A role in cancer therapy?, Integr. Cancer Ther., 2(1), 13 (2003).
  4. C. H. Lee an d J. H. Kim, A review on the medicin al potentials of ginseng and ginsenosides on cardiovascular diseases, J. Ginseng Res., 38(3), 161 (2014).
  5. E. Z. Tchilian, I. E. Zhelezarov, and C. I. Hadjiivanova, Effect of ginsenoside Rg1 on in sulin bin din g in mice liver and brain membranes, Phytotheraphy Res., 5(1), 46 (1991).
  6. T. Yokozawa and H. Oura, Facilitation of protein biosynthesis by ginsenoside-Rb2 administration in diabetic rats, J. Natural Products, 53(6), 1514 (1990).
  7. D. H. Jeong, M. Irfan, S. D. Kim, S. Kim, J. H. Oh, C. K. Park, H. K. Kim, an d M. H. Rhee, Gin sen oside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation, J. Ginseng Res., 41(4), 548 (2017).
  8. C. S. Lee, G. B. Nam, and J. S. Park, Protopanaxatriol inhibits melanin synthesis through inactivation of the pCREB-MITF-tyrosinase signalling pathway in melanocytes, Clin. Exp. Dermatol., 44(3), 295 (2019).
  9. G. B. Mahady, C. Gyllenhaal, H. S. Fong, and N. R. Farnsworth, Ginsengs: a review of safety and efficacy, Nutr. Clin. Care, 3(2), 90 (2000).
  10. B. K. Vogler, M. H. Pittler, an d E. Ernst, The efficacy of ginseng. A systematic review of randomised clinical trials, E. J. Clin. Pharmacol., 55(8), 567 (1999).
  11. H. Matsura, R. Kasai, O. Tanaka, Y. Saruwatari, K. Kunihiro, and T. Fuwa, Further studies on dammaranesaponins of ginseng roots, Chem. Pharm. Bull. 32(3), 1188 (1984).
  12. G. S. Lee, K. Y. Nam, and J. E. Choi, Ginsenoside composition and quality characteristics of red ginseng extracts prepared with different extracting methods, Korean J. Med. Crop. Sci., 21(4), 276 (2013).
  13. K. Y. Nam, The comparative understanding between red ginseng and white ginsengs process ginsengs (Panax ginseng C. A. Meyer), J. Ginseng Res., 29(1), 1 (2005).
  14. B. H. Han, M. H. Park, Y. N. Han, L. K. Woo, U. Sankawa, S. Yahara, and O. Tanaka, Degradation of ginseng saponins under mild acidic conditions, Planta Med., 44(3), 146 (1982).
  15. S. W. Kwon, S. B. Han, I. H. Park, J. M. Kim, M. K. Park, and J. H. Park, Liquid chromatographic determination of less polar ginsenosides in processed ginseng, J. Chromatogr. A., 921(2), 335 (2001).
  16. K. Y. Nam, J. E. Choi, S. C. Hong, M. K. Pyo, and J. D. Park, Recen t progress in research on an tican cer activities of ginsenoside-Rg3, Kor. J. Pharmacogn., 45(1), 1 (2014).
  17. J. Y. Cho, Inhibitory effect of ginsenoside Rg3 and its derivative ginsenoside Rg3-2H on NO production and lymphocyte proliferation, J. Ginseng Res., 32(3) 264 (2008).
  18. C. Zhang, L. Liu, Y. Yu, B. Chen, C. Tang, and X. Li, Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells, Mol. Med. Rep., 5(5), 1295 (2012).
  19. S. D. Ryu, M. G. Heo, and K. S. Yoon, Factors affecting physical properties of solid sun screen usin g respon se surface methodology, J. Soc. Cosmet. Sci. Korea, 45(3), 237 (2019)