DOI QR코드

DOI QR Code

Exploiting Negative Rejection to Achieve Reverse Selectivity Using Membrane Cascade

음배제율을 활용한 분리막 다단공정 기반의 역선택성 구현 연구

  • Seung Hwan Kim (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Jieun Kang (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Jeong F. Kim (Department of Energy and Chemical Engineering, Incheon National University)
  • 김승환 (인천대학교 에너지화학공학과) ;
  • 강지은 (인천대학교 에너지화학공학과) ;
  • 김정 (인천대학교 에너지화학공학과)
  • Received : 2023.12.05
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

Apart from developing better membranes, a clever reconfiguration of membrane cascade process can improve the solute selectivity and minimize solvent consumption. In this work, solvent resistant cellulose nanofiltration membranes were fabricated and the solute rejection performance in various organic solvents were tested. Interestingly, cellulose membranes exhibited unique negative rejection profile in non-polar solvents. Such trend could be exploited to yield reverse selectivity, which showed that low molecular weight solute could be concentrated in the retentate. It was found that more than 3-fold solvent saving could be achieved at the same final purity.

고성능 분리막 제조기술과 더불어 새로운 분리막 다단공정 설계를 통해 용매사용량 감소 및 선택도 향상이 가능하다. 본 연구에서는 내용매성 셀룰로스 나노분리막을 제조하여 용매에 따른 용질의 선택도 차이를 비교하였다. 제막한 셀룰로스 막을 기반으로 비극성 용매의 선택도 평가를 진행하였으며, 비극성 용매에서 용질에 대한 음배제율이 관측되었다. 특히, 분자량이 클수록 음배제율이 높아지는 역선택도의 거동을 확인하였다. 이를 기반으로 설계한 공정에서는 기존 분획 공정 대비 3배 이상의 용매저감이 가능한 것을 확인할 수 있었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1C1C10078761412182103820104)

References

  1. S. H. Kim, B. T. D. Nguyen, H. Ko, M. Kim, K. Kim, S. Y. Nam, and J. F. Kim, "Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes", Int. J. Hydrog. Energy, 46, 15135-15144 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.040
  2. S. H. Kim, J. Song, B. T. Duy Nguyen, J. M. Lee, J. G. Seong, S. Y. Nam, S. So, and J. F. Kim, "Acquiring reliable hydrogen crossover data of hydrated ion exchange membranes to elucidate the ion conducting channel morphology", Chem. Eng. J., 471, 144696 (2023).
  3. R. W. Baker, "Membrane technology", Encyclopedia of Polymer Science and Technology, 3 (2002).
  4. B. Van der Bruggen, "Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis", pp. 25-70, Fundamental Modelling of Membrane Systems, Elsevier, Amsterdam, The Netherlands (2018).
  5. J. F. Kim, J. H. Kim, Y. M. Lee, and E. Drioli, "Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review", AIChE J., 62, 461-490 (2016). https://doi.org/10.1002/aic.15076
  6. S. Gawande, "Cellulose: A natural polymer on the earth", Int. J. Polym. Sci. Eng., 3, 32-37 (2017).
  7. Z. Fang, H. Zhang, S. Qiu, Y. Kuang, J Zhou, Y. Lan, C. Sun, G. Li, Shaoqin Gong, Zhenqiang Ma, "Versatile wood cellulose for biodegradable electronics", Adv. Mater. Technol., 6, 2000928 (2021).
  8. H. Y. N. Thi, S. Kim, B. T. D. Nguyen, D. Lim, S. Kumar, H. Lee, G. Szekely, and J. F. Kim, "Closing the sustainable life cycle loop of membrane technology via a cellulose biomass platform", ACS Sustainable Chem. Eng., 10, 2532- 2544 (2022). https://doi.org/10.1021/acssuschemeng.1c08554
  9. G. Szekely, M. F. Jimenez-Solomon, P. Marchetti, J. F. Kim, and A. G. Livingston, "Sustainability assessment of organic solvent nanofiltration: From fabrication to application", Green Chem., 16, 4440- 4473 (2014). https://doi.org/10.1039/C4GC00701H
  10. S. Kim, Y. Kim, D. Kim, S. Kim, and J. F. Kim, "Solvent filtration performance of thin film composite membranes based on polyethersulfone support", Membr. J., 29, 348-354 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.348
  11. M. L. Hoarfrost, M. S. Tyagi, R. A. Segalman, and J. A. Reimer, "Effect of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes", Macromolecules, 45, 3112- 3120 (2012). https://doi.org/10.1021/ma202741g
  12. E. Gileadi and E. Kirowa-Eisner, "Electrolytic conductivity-the hopping mechanism of the proton and beyond", Electrochim. Acta, 51, 6003-6011 (2006). https://doi.org/10.1016/j.electacta.2006.03.084
  13. J. F. Kim, G. Szekely, M. Schaepertoens, I. B. Valtcheva, M. F. Jimenez-Solomon, and A. G. Livingston, "In situ solvent recovery by organic solvent nanofiltration", ACS Sustain. Chem. Eng., 2, 2371-2379 (2014). https://doi.org/10.1021/sc5004083
  14. J. F. Kim, A. M. F. da Silva, I. B. Valtcheva, and A. G. Livingston, "When the membrane is not enough: A simplified membrane cascade using Organic Solvent Nanofiltration (OSN)", Sep. Purif. Technol., 116, 277-286, 2013. https://doi.org/10.1016/j.seppur.2013.05.050