DOI QR코드

DOI QR Code

Preparation of PEBAX/PVDF Composite Membrane and Separaration of Ethanol/Water Mixtures by Pervaporation

PEBAX/PVDF 복합막 제조 및 투과증발을 통한 에탄올/물 분리 연구

  • Ye Won Jeong (Department of Industrial Chemistry, Pukyong National University) ;
  • Haeeun Na (Department of Industrial Chemistry, Pukyong National University) ;
  • Se Wook Jo (Department of Industrial Chemistry, Pukyong National University) ;
  • Min Young Shon (Department of Industrial Chemistry, Pukyong National University)
  • 정예원 (국립부경대학교 공업화학.고분자공학부 공업화학전공) ;
  • 나해은 (국립부경대학교 공업화학.고분자공학부 공업화학전공) ;
  • 조세욱 (국립부경대학교 공업화학.고분자공학부 공업화학전공) ;
  • 손민영 (국립부경대학교 공업화학.고분자공학부 공업화학전공)
  • Received : 2023.12.04
  • Accepted : 2023.12.07
  • Published : 2023.12.31

Abstract

In this study, a PEBAX/PVDF composite membrane was fabricated, and its pervaporation performance was tested in an ethanol/water mixture. In addition, we attempted to improve the pervaporation performance of the composite membrane by forming a ZIF-8 layer on the surface of the PVDF substrate. The thickness of selective layer was optimized by comparing the pervaporation performance depending on the PEBAX thickness. A pervaporation test was performed on the Ethanol/Water mixture. As a result, the composite membrane using PVDF substrate with ZIF-8 layer had a flux of 1.98 kg/m2h and separation factor of 3.88, showing higher values of both permeation flux and selectivity than the composite membrane using bare PVDF substrate.

본 연구는 PEBAX/PVDF 복합막을 제조하고 에탄올/물 혼합액에 대한 투과증발 성능을 평가하였다. 또한 PVDF 지지체 표면에 ZIF-8 층을 형성하여 복합막의 투과증발 성능을 향상시키고자 하였고, PEBAX 선택층 두께에 따른 성능 비교를 통해 최적의 막을 선정하였다. 제작된 복합막을 물과 에탄올이 95/5 중량비로 혼합된 공급액에 대하여 투과증발 실험을 수행하였다. 그 결과 ZIF-8 충이 형성된 PVDF 지지체를 사용한 복합막의 경우 플럭스 1.98 kg/m2h, 분리 계수 3.88로 일반 PVDF 지지체를 사용한 복합막보다 투과량과 선택도가 모두 높은 값을 나타내었다.

Keywords

Acknowledgement

본 논문은 부산광역시 및 (재)부산테크노파크의 BB21plus 사업으로 지원된 연구임

References

  1. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, "Bio-ethanol-the fuel of tomorrow from the residues of today", J Trends Biotechnol, 24, 12 (2006). 
  2. J. Baeyens, Q. Kang, L. Appels, R. Dewil, Y. Lv, and T. Tan, "Challenges and opportunities in improving the production of bio-ethanol", Prog Energy Combust Sci, 47, 60-88 (2015).  https://doi.org/10.1016/j.pecs.2014.10.003
  3. S. Nakao, F. Saitoh, T. Asakura, K. Toda, and S. Kimura, "Continuous ethanol extraction by pervaporation from a membrane bioreactor", J. Membr. Sci., 30, 3 (1987). 
  4. B. K. Dutta and S. K. Sikdar, "Separation of azeotropic organic liquid mixtures by pervaporation", AIChE J., 37, 4 (1991). 
  5. A. Jonquieres, R. Clement, P. Lochon, J. Neel, M. Dresch, and B. Chretien, "Industrial state-of-the-art of pervaporation and vapour permeation in the western countries", J. Membr. Sci., 206, 1-2 (2002).  https://doi.org/10.1016/S0376-7388(02)00035-2
  6. O. Trifunovic, and G. Tragardh, "The influence of support layer on mass transport of homologous series of alcohols and esters through composite pervaporation membranes", J. Membr. Sci., 259, 1-2 (2005).  https://doi.org/10.1016/j.memsci.2005.03.011
  7. F. Liu, L. Liu, and X. Feng, "Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation", Sep. Purif. Technol, 42, 3 (2005). 
  8. G. D. Kang and Y. M. Cao, "Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review", J. Membr. Sci., 463, 145-165 (2014).  https://doi.org/10.1016/j.memsci.2014.03.055
  9. X. L. Liu, Y. S. Li, G. Q. Zhu, Y. J. Ban, L. Y. Xu, and W. S. Yang, "An Organophilic Pervaporation Membrane Derived from Metal-Organic Framework Nanoparticles for Efficient Recovery of Bio-Alcohols", Angew. Chem. Int. Ed., 50, 45, (2011).  https://doi.org/10.1002/anie.201104383
  10. N. L. Le, Y. Wang, and T. S. Chung, "Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation", J. Membr. Sci., 379, 1-2 (2011).  https://doi.org/10.1016/j.memsci.2011.06.004
  11. M.N. Hyder, R. Y. M. Huang, and P. Chen, "Effect of selective layer thickness on pervaporation of composite poly(vinyl alcohol)-poly(sulfone) membranes", J. Membr. Sci., 318, 1-2 (2008).  https://doi.org/10.1016/j.memsci.2008.03.046
  12. S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, and A. Venimadhav, "Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency", Solid State Ionics, 292, 130-135 (2016).  https://doi.org/10.1016/j.ssi.2016.05.020
  13. Y. H. Si, Y. Y. Li, Y. Xia, S. K. Shang, X. B. Xiong, X. R. Zeng, and J. Zhou, "Fabrication of novel ZIF-8@BiVO4 composite with enhanced photocatalytic performance", Crystals, 8, 432 (2018). 
  14. R. Semino, N. A. Ramsahye, A. Ghoufi, and G. Mauri, "Microscopic model of the metal-organic framework/polymer interface: A first step toward understanding the compatibility in mixed matrix membranes", ACS Appl. Mater. Interfaces, 8, 1, (2016). 
  15. Y. Tang, D. Dubbeldam, X. Guo, G. Rothenberg, and S. Tanase, "Efficient separation of ethanol-methanol and ethanol-watermixtures using ZIF‑8 supported on a hierarchical porous mixed-oxide substrate", ACS Appl. Mater. Interfaces, 11, 23, (2019). https://doi.org/10.1021/acsami.9b02325