DOI QR코드

DOI QR Code

Enzyme Immobilized Membrane Bioreactor for Removal of Dye: A Review

염료제거용 효소고정화막 생물반응기: 리뷰

  • Yuhan Jeong (Bio-Convergence, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 유한정 (연세대학교 언더우드국제대학 융합과학공학부 바이오융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.11.28
  • Accepted : 2023.12.04
  • Published : 2023.12.31

Abstract

Enzyme Immobilized Membrane Bioreactors (EMBRs) are a novel method to treat dyes within wastewater. Due to their efficacy and high resistance to the environment, there has been a large amount of research being done in this area. There are a variety of ways to approach EMBRs that include both the enzyme itself and the structure of said enzymes. The bioreactor itself can be modified to suit the needs of the dye removal. Ranging from Enzymatic bioreactors to utilizing nanostructures such as graphene oxide or carbon nanotubes. Furthermore, nanoparticles such as TiO2 can be used to enhance the EMBR further as well. The polymer-based membrane supporting structure also includes a variety of different ways to approach the problem of increasing efficacy. As seen, during the past decades, different approaches to this issue that utilize EMBRs have been done. This review aims to summarize the methodologies and describe the various improvements to EMBRs that have been made.

효소 고정화 막 생물반응기(EMBRs)는 폐수 내의 염료를 처리하는 새로운 방법입니다. 이 분야는 효소의 효능과 환경에 대한 높은 저항성 때문에 많은 양의 연구가 진행되었습니다. 효소 자체와 해당 효소의 구조를 모두 포함하는 다양한 방법이 EMBR에 접근할 수 있습니다. 생물반응기 자체는 염료 제거의 필요에 맞게 변형될 수 있습니다. 효소적 생물반응기부터 산화 그래핀 또는 탄소 나노튜브와 같은 나노구조를 사용하는 것까지 다양합니다. 또한 TiO2와 같은 나노입자는 EMBR을 더욱 향상시키기 위해 사용될 수 있습니다. 폴리머 기반의 막 지지 구조는 또한 효능 증가의 문제에 접근하는 다양한 방법을 포함합니다. 본 바와 같이, 지난 수십 년 동안 EMBR을 사용하는 이 문제에 대한 다양한 접근법이 수행되었습니다. 이 검토는 방법론을 요약하고 EMBR에 대한 다양한 개선 사항을 설명하는 것을 목표로 합니다.

Keywords

References

  1. H. M. Solayman, M. A. Hossen, A. Abd Aziz, N. Y. Yahya, K. H. Leong, L. C. Sim, M. U. Monir, and K.-D. Zoh, "Performance evaluation of dye wastewater treatment technologies: A review", J. Environ. Chem. Eng., 11, 109610 (2023). 
  2. E. Birhanli, S. A. A. Noma, F. Boran, A. Ulu, O. Yesilada, and B. Ates, "Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes", Chemosphere, 292, 133382 (2022). 
  3. S. Sarkar, A. Banerjee, U. Halder, R. Biswas, and R. Bandopadhyay, "Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes", Water Conservation Sci. Eng., 2, 121 (2017). 
  4. S. Rodriguez-Couto, "Immobilized-laccase bioreactors for wastewater treatment", Biotechnol. J., (2023). 
  5. S. Naseem, R. S. Rawal, D. Pandey, and S. K. Suman, "Immobilized laccase: An effective biocatalyst for industrial dye degradation from wastewater", Environ. Sci. Pollut. Res., 30, 84898 (2023). 
  6. N. A. Daronch, M. Kelbert, C. S. Pereira, P. H. H. de Araujo, and D. de Oliveira, "Elucidating the choice for a precise matrix for laccase immobilization: A review", Chem. Eng. J., 397, 125506 (2020). 
  7. D. Brady and J. Jordaan, "Advances in enzyme immobilisation", Biotechnol. Lett., 31, 1639 (2009). 
  8. J. Patil, M. Kamalapur, S. Marapur, and D. Kadam, "Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review", Dig. J. Nanomater. Biostructures, 5, 241 (2010). 
  9. C. Rother and B. Nidetzky, "Enzyme immobilization by microencapsulation: Methods, materials, and technological applications", pp. 1-21, Encyclopedia of Industrial Biotechnology, Hoboken: John Wiley& Sons, Ltd, NJ, USA (2014). 
  10. H. T. Imam, P. C. Marr, and A. C. Marr, "Enzyme entrapment, biocatalyst immobilization without covalent attachment", Green Chemistry, 23, 4980, (2021). 
  11. J. F. Liang, Y. T. Li, and V. C. Yang, "Biomedical application of immobilized enzymes", J. Pharm. Sci., 89, 979 (2000). 
  12. Q. Shen, R. Yang, X. Hua, F. Ye, W. Zhang, and W. Zhao, "Gelatin-templated biomimetic calcification for β-galactosidase immobilization", Process Biochem., 46, 1565 (2011). 
  13. L. Cao, L.v. Langen, and R. A. Sheldon, "Immobilised enzymes: Carrier-bound or carrier-free?", Curr. Opin. Biotechnol., 14, 387 (2003). 
  14. K. Jankowska, Z. Su, J. Zdarta, T. Jesionowski, and M. Pinelo, "Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers", J. Hazard. Mater., 435, 129071 (2022). 
  15. W. Kim, Y. Jeong, S. Back, S. Kim, and J. Kim, "Decolorization of textile dye by spore surface displayed small laccase for the enhanced thermal stability and robust repeated reaction", Biotechnol. Bioprocess Eng., 27, 930 (2022). 
  16. G. Li, Q. Wang, P. Lv, Z. Ding, F. Huang, Q. Wei, and L. A. Lucia, "Bioremediation of dyes using ultrafine membrane prepared from the waste culture of ganoderma lucidum with in-situ immobilization of laccase", BioResour., 11, 9162 (2016). 
  17. S. Ma, C. Wei, H. Jiang, Z. Chen, Z. Xu, and X. Huang, "A catalytic membrane based on dopamine directional deposition biomimetically induced by immobilized enzyme for dye degradation", Chem. Eng. Res. Des., 188, 453 (2022). 
  18. J. Wan, X. Sun, C. Liu, M. Tang, L. Li, and H. Ni, "Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase", World J. Microbiol. Biotechnol., 33, 123 (2017). 
  19. Y. Zhang, W. Dong, Z. Lv, J. Liu, W. Zhang, J. Zhou, F. Xin, J. Ma, and M. Jiang, "Surface display of bacterial laccase CotA on escherichia coli cells and its application in industrial dye decolorization", Mol. Biotechnol., 60, 681 (2018). 
  20. H. M. Xu, X. F. Sun, S. Y. Wang, C. Song, and S. G. Wang, "Development of laccase/graphene oxide membrane for enhanced synthetic dyes separation and degradation", Sep. Purif. Technol., 204, 255 (2018). 
  21. A. M. Othman, E. Gonzalez-Dominguez, A. Sanroman, M. Correa-Duarte, D. Moldes, "Immobilization of laccase on functionalized multiwalled carbon nanotube membranes and application for dye decolorization", RSC Adv., 6, 114690 (2016). 
  22. S. Zaccaria, N. A. Boff, F. Bettin, and A. J. P. Dillon, "Use of micro- and ultrafiltration membranes for concentration of laccase-rich enzymatic extract of Pleurotus sajor-caju PS-2001 and application in dye decolorization", Chem. Pap., 73, 3085 (2019). 
  23. Q. Wang, T. Wang, Z. Lv, M. Cui, Z. Zhao, X. Cao, and Q. Wei, "TiO2 sol-gel coated PAN/OMMT multi-functional composite nanofibrous membrane used as the support for laccase immobilization: Synergistic effect between the membrane support and enzyme for dye degradation", Polym., 12, 139 (2020). 
  24. G. Li, A. G. Nandgaonkar, Q. Wang, J. Zhang, W. E. Krause, Q. Wei, and L. A. Lucia, "Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio- catalytic dye degradation", J. Membr. Sci., 525, 89 (2017). 
  25. S. Kolak, E. Birhanli, F. Boran, B. Bakar, A. Ulu, O. Yesilada, and B. Ates, "Tailor-made novel electrospun polycaprolactone/polyethyleneimine fiber membranes for laccase immobilization: An all-in-one material to biodegrade textile dyes and phenolic compounds", Chemosphere, 313, 137478 (2023). 
  26. Y. Zhu, F. Qiu, J. Rong, T. Zhang, K. Mao, and D. Yang, "Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment", Colloids Surf. B Biointerfaces, 191, 111025 (2020).