DOI QR코드

DOI QR Code

Expression of Corazonin Gene by Developmental Stage of Scuttle Fly

  • Hohyun Park (Department of Biomedical Laboratory Science, Mokpo Science University)
  • Received : 2023.11.10
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

The corazonin (Crz) gene showed two subtypes of different length at laval and pupal stage. The long subtype fade out in adult central nerve system (CNS) but the short one survive through all the life cycle from larva to adult. The short subtype has the same base sequences with mature Crz mRNA and detected in both brain and ventral nerve cord (VNC). The long one, on the contrary, was detected only in the brain tissue. As observed in above results, Crz neurons develop in different pattern in the CNS of scuttle fly and the Crz gene expresses two different subtypes. These results suggest that this neurotransmitter may perform differential neurophysiological functions in the scuttle fly. Variation in the amino acid composition of the final active undecapeptide supports in strong those possibilities. We expect further studies on the relationship between neurophysiological functions of Crz and behavioral characteristics of the scuttle fly.

Keywords

Acknowledgement

The study was supported by reserch find Mokpo Science University, 2023.

References

  1. Awad TA, Truman JW. Postembryonic development of the midline glia in the CNS of Drosophila: proliferation, programmed cell death, and endocrine regulation. Dev Biol. 1997. 187: 283-297. https://doi.org/10.1006/dbio.1997.8587
  2. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell. 2000. 101: 103-113. https://doi.org/10.1016/S0092-8674(00)80627-3
  3. Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster." PhD diss., University of Tennessee. 2009.
  4. Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232. https://doi.org/10.1242/dev.02376
  5. Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385. https://doi.org/10.1002/cne.20419
  6. Draizen TA, Ewer J, Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol. 1999. 38: 455-465. https://doi.org/10.1002/(SICI)1097-4695(199903)38:4<455::AID-NEU2>3.0.CO;2-F
  7. Karcavich R, Doe CQ. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol. 2005. 481: 240-251. https://doi.org/10.1002/cne.20371
  8. Kim J, Kim JW, Park JH. Characterization and expression of corazonin gene in the scuttle fly, Megaselia scalaris. 2013. GenBank; KF318884.1
  9. Kimura KI, Truman JW. Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. J Neurosci. 1990. 10: 403-411. https://doi.org/10.1523/JNEUROSCI.10-02-00403.1990
  10. Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673. https://doi.org/10.1007/s00441-007-0549-5
  11. Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48. https://doi.org/10.1002/cne.22498
  12. Lundell MJ, Lee HK, Pe'rez E, Chadwell L. The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila. Development. 2003. 130: 4109-4121. https://doi.org/10.1242/dev.00593
  13. Novotny T, Eiselt R, Urban J. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development. 2002. 129: 1027-1036. https://doi.org/10.1242/dev.129.4.1027
  14. Park HH. The Development Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2018. 24: 125-129. https://doi.org/10.15616/BSL.2018.24.2.125
  15. Park HH. The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2020. 26: 1-9. https://doi.org/10.15616/BSL.2020.26.3.217
  16. Park HH. The Expression of Corazonin Neurons in Pupa and Adult Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2021. 27: 239-247. https://doi.org/10.15616/BSL.2021.27.4.239
  17. Park HH. Morphological Characteristics of Neural Tissue and Corazonin Neurons of Central Nervous System in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2022. 28: 290-297. https://doi.org/10.15616/BSL.2022.28.4.290
  18. Park HH, Park MS, Na KJ. Development of Central Nervous System in Scuttle Fly. Korean J Clin Lab Sci. 2018. 50: 284-288. https://doi.org/10.15324/kjcls.2018.50.3.284
  19. Robinow S, Talbot WS, Hogness DS, Truman JW. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development. 1993. 119: 1251-1259. https://doi.org/10.1242/dev.119.4.1251
  20. Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M, Brachmann C, White K. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development. 2011. 138: 2197-2206. https://doi.org/10.1242/dev.058826
  21. Truman JW. Metamorphosis of the central nervous system of Drosophila. J Neurobiol. 1990. 21: 1072-1084. https://doi.org/10.1002/neu.480210711
  22. Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev. 2011. 6: 15.