DOI QR코드

DOI QR Code

A Comparative Study of Microtremor HVSR from the Surface and Downhole Seismometers

지표형과 지중형 지진계의 상시미동 자료를 이용한 HVSR 비교 연구

  • Su Young Kang (Institute of Geohazard Research, Pusan National University) ;
  • Kwang-Hee Kim (Department of Geological Science, Pusan National University)
  • 강수영 (부산대학교 지질재해연구소) ;
  • 김광희 (부산대학교 지질환경과학과)
  • Received : 2023.10.05
  • Accepted : 2023.11.22
  • Published : 2023.12.31

Abstract

The horizontal-to-vertical spectral ratio (HVSR) has been widely applied to evaluate ground characteristics such as site response and thickness of the soft sedimentary layer on top of the bedrock via dominant frequencies and amplification factors of microtremors. Eight seismic stations were selected to investigate the HVSR results at the surface and at varying depths, and their variations due to wind speeds. These stations are equipped with seismic sensors on the surface and downhole(s) at depths. The borehole data analysis reveals that the geological condition at burial depth influences the HVSR results. Their dominant frequencies indicate the entire thickness of the soft layer, not the thickness to the bottom or top of the soft sedimentary layer from the seismometer burial depth. Analysis of the background noise observed at the surface showed that the resonance frequency estimation varied with wind speed changes. In the studied cases, the background noise observed in the sedimentary layer at depths of 20 to 66 meters yielded stable and consistent resonance frequency estimation regardless of wind speed fluctuations. The results of the seismic sensors buried deeper than 100 meters are unstable. The result indicates that the background noise from the buried seismometer at shallow depths (~0.3 m) under light wind conditions (wind speeds less than 3 m/s) is sufficient to achieve the purpose of the HVSR analysis.

상시미동을 이용한 수평-수직 스펙트럼 비 방법은 해당부지의 공명주파수와 지반증폭 계수를 추정하여 퇴적층 두께 및 부지응답 등 지반특성을 평가하기 위해 널리 사용된다. 이 연구는 배경잡음을 관측한 깊이와 풍속 변화가 HVSR 결과에 미치는 영향을 분석하였다. 지표형 지진계와 지중형 지진계가 설치되어 있는 8개 지진관측소를 선택하여 연구를 진행하였다. 분석결과를 종합해서 지진센서가 설치된 깊이에서의 지질학적 특성이 HVSR 결과에 영향을 미치는 것을 확인하였다. 또한 결정된 공명주파수는 지진센서가 설치된 퇴적층 전체 두께를 지시한다. 지표에서 관측한 배경잡음을 분석하면 풍속 변화에 따라 공명주파수가 다르게 추정된다. 이번 연구에서 분석한 결과는 지중 20-66 m 깊이에서 관측한 배경잡음은 풍속 변화에도 불구하고 공명주파수가 일정하게 추정되었다. 지중 100 m 이상의 깊은 깊이에서 수집한 상시미동 자료를 HVSR 분석하는 것은 결과가 불안정하다. 이번 연구는 지진계를 얕은 깊이(~0.3 m)에 매설하고 약한 풍속에서 관측한 자료를 사용하여도 HVSR 분석 목적을 달성하기에 충분한 결과를 얻을 수 있음을 보여준다.

Keywords

Acknowledgement

본 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다.

References

  1. Ahn, J.K., Cho, S., Jeon, Y.S. and Lee, D.K., 2018, Response characteristics of site-specific using aftershock event. Journal of the Korean Geotechnical Society, 34. 51-64.
  2. Assatourians, K. and Atkinson, G., 2010, Database of Processed Time Series and Response Spectra Data for Canada: An Example Application to Study of 2005 MN5.4 Rivier du Loup, Quebec. Earthquake. Seismological Research Letters, 81, 1013-1031 DOI: https://doi.org/10.1785/gssrl.81.6.1013.
  3. Badrane, S., Bahi, L., Jabour, N., and Brahim, A. I., 2006, Seismic site effect estimation in the city of Rabat (Morocco). Journal of Geophysics and Engineering 3, 207-211 DOI: 10.1088/1742-2132/3/3/001.
  4. Bignardi, S., Mantovani, A., and AbuZeid, N., 2016, OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences 93, 103-113 DOI: http://dx.doi.org/10.1016/j.cageo.2016.05.009.
  5. Bottelin, P., Dufrechou, G., Seoane, L., Llubes, M., and Monod, B., 2019, Geophysical methods for mapping Quaternary sediment thickness: Application to the Saint-Lary basin (French Pyrenees). Comptes Rendus Geoscience, 351, 407-419. https://doi.org/10.1016/j.crte.2019.07.001
  6. Castellaro, S. and Mulargia, F., 2009, Vs30 Estimates using constrained H/V measurement. Bulletin of the Seismological Society of America, 99, 761-773. https://doi.org/10.1785/0120080179
  7. Chatelain, J.C., Guillier, B., Cara, F., Duval, A., Atakan, K., Bard, P., and The WP02 SESAME team, 2008, Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering, 6, 33-74. https://doi.org/10.1007/s10518-007-9040-7
  8. Chatelain J.L and Guillier B, 2013, Reliable fundamental frequencies of soils and buildings down to 0.1 Hz obtained from ambient vibrations recordings with a 4.5-Hz sensor. Seism Res Lett 84(2):199-209. https://doi.org/10.1785/0220120003
  9. Chen, Q., Liu, L., Wang, W., and Rohrbach, E., 2009, Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Chinese Science Bulletin, 54, 280-287. https://doi.org/10.1007/s11434-008-0422-2
  10. ESRI, 2022. http://server.arcgisonline.com/arcgis/rest/services/World_Imagery/MapServer
  11. Field, E.H. and Jacob, K., 1993, The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters, 20-24, 2925-2928. https://doi.org/10.1029/93GL03054
  12. Geopsy Group, 2019, Geopsy Package Release 3.2.0, http://www.geopsy.org/ (March 4th 2019).
  13. Guillier B., Atakan K., Chatelain J.L., Havskov J., Ohnberger M., Cara F., Duval A.-M, Zacharopoulos S., Teves-Costa P., and SESAME Team, 2008, Infuence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6(1):3-31. https://doi.org/10.1007/s10518-007-9039-0
  14. Haghshenas, E., Bard, P.-Y., Theodulidis, N., and SESAME WP04 Team, 2008, Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering 6, 75-108 DOI: https://doi.org/10.1007/s10518-007-9058-x.
  15. Hassani, B. and Atkinson, G. M., 2016, Applicability of the Site Fundamental Frequency as a VS30 Proxy for Central and Eastern North America. Bulletin of the Seismological Society of America, 106, 653-664 DOI: https://www.doi.org/10.1785/0120150259.
  16. Hong, M.H. and Kim, K.Y., 2010, H/V Spectral-ratio analysis of microtremors in Jeju Island. Geophysics and Geophysical Exploration, 13, 144-152.
  17. Hwang, I.G, Son, J.S, and Cho, S., 2021, Event stratigraphy of Yeonil Group, Pohang Basin: Based on correlation of 21 deep cores and outcrop sections. Journal of the Geological Society of Korea. 57(5) :649-678 (in Korean) DOI http://dx.doi.org/10.14770/jgsk.2021.57.5.649
  18. Ibs-von Seht, M. and Wohlenberg, J., 1999, Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89, 250-259. https://doi.org/10.1785/BSSA0890010250
  19. Kagami, H., Okada, S., Shiono, K., Oner, M., Dravinski, M., and Mal, A.K., 1986, Observation of 1 to 5 second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley. Bulletin of the Seismological Society of America, 76, 1801-1812. https://doi.org/10.1785/BSSA0760061801
  20. Kang, S.Y., K.H. Kim, D.Y. Kim, B.Y. Jeon, and J.W. Lee, 2020a. Effects of meterological variations and sensor burial depth on HVSR analysis. Journal of Korean Earth Science Society, 46(6), 658-669. (in Korean) DOI: https://doi.org/10.5467/JKESS.2020.41.6.658
  21. Kang, S.Y., K.H. Kim, J.M. Chiu, and L. Liu, 2020b. Microtremor HVSR analysis of heterogeneous shallow sedimentary structures at Pohang, South Korea, Journal of Geohphysical and Engineering, 17, 861-869. doi:10.1093/jge/gxaa035
  22. Kang, S.Y., K.H. Kim, and B. Kim, 2021. Assessment of seismic vulnerability using the horizontal-to-vertical spectral ratio (HVSR) method in Haenam, Korea. Geosciences Journal. 25, 71-81. https://doi.org/10.1007/s12303-020-0040-9
  23. Kang, S.Y., and K.H. Kim, 2022. Bedrock depth variations and their applications to identify blind faults in the Pohang area using the horizontal-to-vertical spectral ratio (HVSR). Journal of Korean Earth Science Society, 43(1), 188-198. (in Korean) https://doi.org/10.5467/JKESS.2022.43.1.188
  24. KIGAM, 2022, Geological Map of Korea, https://mgeo.kigam.re.kr/ (last accessed on September 26th, 2022)
  25. KIGAM, 2023, Big Data Open Platformm, https://data.kigam.re.kr/quake/ (last accessed on April 03, 2023)
  26. Kim, J.-K., 2009. Analysis of site amplification of seismic stations using Odesan earthquake, Earthquake Engineering Society of Korea, 13, 27-34. (in https://doi.org/10.5000/EESK.2009.13.1.027
  27. KMA (Korea Meteorological Administration), 2022a. Weather data open portal, https://data.kma.go.kr/cmmn/main.do (last accessed on September 26th, 2022)
  28. KMA (Korea Meteorological Administration), 2022b. personal communication.
  29. Konno, K. and Ohmachi, T., 1998, Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of ambient noise. Bulletin of the Seismological Society of America, 88, 228-241. https://doi.org/10.1785/BSSA0880010228
  30. Lee, H., Kim, R., and Kang, T.S., 2017, Seismic response from microtremor of Chogye Basin, Korea. Geophysics and Geophysical Exploration, 20, 88-95. (in
  31. Liu, L., Chen, Q., and Wang, W., 2014, Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area. Earthquake Science, 27, 89-100. https://doi.org/10.1007/s11589-013-0052-x
  32. Molnar S, Assaf J, Sirohey A, Adhikari S, 2020, Overview of local site efects and seismic microzonation mapping in Metropolitan Vancouver, British Columbia. Canada Eng Geol 270:105568. https://doi.org/10.1016/j.enggeo.2020. 105568
  33. Molnar S. Sirohey A, Assaf J, Bard P.-Y., Castellaro S, Cornou C., Cox B, Guillier B, Hassani B, Kawase H, Matsushima S, Sanchez-Sesma F. J., Yong A, 2022, A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. J Seismol, 26:653-685. https://doi.org/10.1007/s10950-021-10062-9
  34. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25-33.
  35. Nakamura, Y., 2019, What is the Nakamura Method? Seismological Research Letters, 90, 1437-1443 DOI: https://doi.org/10.1785/0220180376.
  36. NECIS, 2023, https://necis.kma.go.kr/ (last accessed on April 03, 2023)
  37. Ohmachi, T., Nakamura, Y., and Toshinawa, T., 1991, Ground motion characteristics in the San Francisco Bay area detected by micretremor measuremnets, Proc. 2nd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, 1643-1648.
  38. Parolai, S., Bormann, P., and Milereit, C., 2002, New relationships between Vs, Thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the Seismological Society of America, 92, 2521-2527. https://doi.org/10.1785/0120010248
  39. SESAME, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation, SESAME. Report No. Project No. EVG1-CT-2000-00026 SESAME.
  40. Socco LV, Strobbia C, 2004, Surface-wave method for nearsurface characterization: a tutorial. Near Surface Geophysics 2(4):165-185 https://doi.org/10.3997/1873-0604.2004015
  41. Song, C. W., M. Son, Y. K. Sohn, R. Han, Y. J. Shinn and J.-C. Kim, 2015. A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. J. Geol. Soc. Korea 51, 53-66 DOI: 10.14770/jgsk.2015.51.1.53.
  42. Teves-Costa, P., Matias, L., Oliveira, C.S., and Mendez-Victor, L.A., 1996, Shallow crustal models in the Losbon area from explosion data using body and surface wave analysis, Tectonophysics, 258, 171-193. https://doi.org/10.1016/0040-1951(95)00194-8
  43. Theodulidis, N.P. and Bard, P.Y., 1995, Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1), Soil Dynamics and Earthquake Engineering, 14, 177-197. https://doi.org/10.1016/0267-7261(94)00039-J
  44. Wathelet, M., Chatelain, J.L., Cornou, C., Giulio, G.D., Guillier, B., Ohrnberger, M., and Savvaidis, A., 2020, Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91, 1878-1889. https://doi.org/10.1785/0220190360
  45. Yoo, B.H., Choi, W., Choi, I., and Kwak, D., 2022, Reliability assessment of ambient noise HVSR per observation condition, KSCE Journal of Civil and Environmental Engineering Research, 42(1): 23-33. (in Korean) DOI: https://doi.org/10.12652/Ksce.2022.42.1.0023
  46. Yun, W.Y., Park, S.C., and Kim, K.Y., 2013, Comparison of background noise characteristics between surface and borehole station of Hwacheon. Geophysics and Geophysical Exploration, 16, 203-210. (in Korean)  https://doi.org/10.7582/GGE.2013.16.4.203