DOI QR코드

DOI QR Code

Bioaccumulation and Expressions of Stress Response Genes in Benthic Oligochaete Worm Tubifex tubifex to Exposure of Cadmium-spiked Sediment

카드뮴 (Cd) 노출 퇴적물에 따른 실지렁이 Tubifex tubifex의 체내 축적과 스트레스 반응 유전자 발현

  • Ji-Hoon Kim (Department of Ocean Integrated Science, Chonnam National University) ;
  • Won-Seok Kim (Department of Ocean Integrated Science, Chonnam National University) ;
  • Kiyun Park (Fisheries Science Institute, Chonnam National University) ;
  • Ihn-Sil Kwak (Department of Ocean Integrated Science, Chonnam National University)
  • 김지훈 (전남대학교 해양융합과학과) ;
  • 김원석 (전남대학교 해양융합과학과) ;
  • 박기연 (전남대학교 수산과학연구소) ;
  • 곽인실 (전남대학교 해양융합과학과)
  • Received : 2023.08.08
  • Accepted : 2023.12.03
  • Published : 2023.12.31

Abstract

Cadmium (Cd), a heavy metal found in the aquatic environment, accumulates in organisms through the food chain. In the study, we investigated the survival rates, measurement of body Cd levels, and expression analysis of the stress response genes (Heat shock protein 70: HSP70 and Heat shock protein 60: HSP60) and antioxidant enzyme Glutathione S-Transferases (GST) on benthic oligochaete worm Tubifex tubifex exposed three concentrations of Cd, to analyze the bioaccumulation and changes of stress gene expressions to exposure toxicity of the Cd-spiked sediment. Survival rates of T. tubifex exposed to the Cdspiked sediment were 93% at 0.4 mg kg-1 Cd, 96% at 1.87 mg kg-1 Cd, and 93% at 6.09 mg kg-1 Cd for 10 days. Cd concentration in the body of T. tubifex was higher than that in the sediment. After Cd exposures for 10 days, the body Cd levels were 18.4 mg kg-1, 13.06 mg kg-1, and 79.11 mg kg-1 at exposed three concentrations of Cd, respectively. Upregulation of HSP70 gene expression was observed at all concentrations of exposed Cd as a time-dependent manner, whereas transcriptional expression of the HSP60 gene increased as a timedependent manner in T. tubifex exposed to the relative high concentration (6.09 mg kg-1) of Cd. However, GST gene expression increased on day 1 at all concentrations after Cd exposures, and then downregulated until 10 days. These results indicate to ecotoxicological and molecular effects in benthic oligochaete worm T. tubifex to Cd-spiked sediment and provide the basic information for the utilization of environmental toxicity assessment using the T. tubifex as a aquatic pollution indicator species.

환경에 존재하는 중금속인 Cd은 생물에게 유입되며 먹이사슬을 통해 생물에게 축적된다. 본 연구에서는 카드뮴 노출에 따른 오염지표생물인 실지렁이(Tubifex tubifex)의 체내 농축 반응 및 스트레스 유전자 발현 패턴을 분석하기 위해, 퇴적물 내 카드뮴 노출 후 생존율 변화, 체내 농축 농도 측정, 그리고 스트레스 반응 유전자인 열 충격 단백질(HSP60 and HSP70)과 항산화효소인 GST의 발현 패턴을 관찰하였다, Cd 노출 퇴적물에 노출된 T. tubifex의 생존율은 노출 10일에 0.4 mg kg-1 Cd에서 93%, 1.87 mg kg-1 Cd에서 96%, 6.09 mg kg-1 Cd에서 93%로 관찰되었다. T. tubifex의 체내 Cd 농도는 퇴적물 내 Cd 농도에 비해 높게 나타났으며, 0.4 mg kg-1 Cd에서는 실험 10일에 18.4 mg kg-1 Cd, 1.87 mg kg-1 Cd에서 실험 1일에 13.06 mg kg-1 Cd, 6.09 mg kg-1 Cd에서 실험 10일에 79.11 mg kg-1 Cd로 가장 높게 나타났다. HSP60 유전자 발현은 6.09 mg kg-1 Cd 노출 퇴적물에서 시간 의존적으로 발현이 대조군에 비해 증가였으며, HSP70은 모든 농도에서 대조군에 비해 시간 의존적인 발현의 증가를 보였다. 또한, GST는 모든 농도에서 실험 1일에 대조군에 비해 발현이 증가한 후, 실험 10일까지 발현이 감소하였다. 이러한 연구결과는 퇴적물 내에 존재하는 Cd에 대한 실지렁이의 생태독성학적 및 분자유전학적 독성영향을 확인한 결과로, 환경 내 오염지표종으로 실지렁이를 이용한 환경독성평가의 기초자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 한국연구재단의 지원 (NRF-2018-R1A6A1A-03024314, NRF-2020-R1A2C1013936)과 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원(2021003050001)을 받아 수행된 연구임.

References

  1. Aksakal, F.I. 2020. Evaluation of boscalid toxicity on Daphnia magna by using antioxidant enzyme activities, the expression of genes related to antioxidant and detoxification systems, and life-history parameters. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 237: 108830.
  2. Ali, H. and E. Khan. 2019. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal 25(6): 1353-1376. https://doi.org/10.1080/10807039.2018.1469398
  3. Barjhoux, I., M. Baudrimont, B. Morin, L. Landi, P. Gonzalez and J. Cachot. 2012. Effects of copper and cadmium spikedsediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicology and Environmental Safety 79: 272-282. https://doi.org/10.1016/j.ecoenv.2012.01.011
  4. Bartsch, M.R., W.G. Cope and R.G. Rada. 1999. Effects of cadmium-spiked sediment on cadmium accumulation and bioturbation by nymphs of the burrowing mayfly Hexagenia bilineata. Water, Air, and Soil Pollution 109: 277-292. https://doi.org/10.1023/A:1005089601201
  5. Blanchette, B., X. Feng and B.R. Singh. 2007. Marine glutathione S-transferase. Marine Biotechnology 9: 513-542. https://doi.org/10.1007/s10126-007-9034-0
  6. Chandurvelan, R., I.D. Marsden, C.N. Glover and S. Gaw. 2015. Assessment of a mussel as a metal bioindicator of coastal contamination: relationships between metal bioaccumulation and multiple biomarker responses. Science of the Total Environment 511: 663-675. https://doi.org/10.1016/j.scitotenv.2014.12.064
  7. Chatterjee, A., R. Bhattacharya, S. Chatterjee and N.C. Saha. 2021. Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 242: 108943.
  8. Cocci, P., M. Capriotti, G. Mosconi and F.A. Palermo. 2017. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. Environmental Research 158: 616-624. https://doi.org/10.1016/j.envres.2017.07.024
  9. Conder, J.M., L.D. Seals and R.P. Lanno. 2002. Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida. Chemosphere 49(1): 1-7. https://doi.org/10.1016/S0045-6535(02)00192-3
  10. Delahaut, V., B. Raskovic, M.S. Salvado, L. Bervoets, R. Blust and G. De Boeck. 2020. Toxicity and bioaccumulation of Cadmium, Copper and Zinc in a direct comparison at equitoxic concentrations in common carp (Cyprinus carpio) juveniles. PLoS One 15(4): e0220485.
  11. Diaconu, M., L.V. Pavel, R.M. Hlihor, M. Rosca, D.I. Fertu, M. Lenz, P.X. Corvini and M. Gavrilescu. 2020. Characterization of heavy metal toxicity in some plants and microorganisms - A preliminary approach for environmental bioremediation. New Biotechnology 56: 130-139. https://doi.org/10.1016/j.nbt.2020.01.003
  12. Guo, Z., Z. Ni, H. Ye, J. Xiao, L. Chen, I. Green and L. Zhang. 2019. Simultaneous uptake of Cd from sediment, water and diet in a demersal marine goby Mugilogobius chulae. Journal of Hazardous Materials 364: 143-150. https://doi.org/10.1016/j.jhazmat.2018.09.045
  13. He, Y., B. Men, X. Yang, Y. Li, H. Xu and D. Wang. 2017. Investigation of heavy metals release from sediment with bioturbation/bioirrigation. Chemosphere 184: 235-243. https://doi.org/10.1016/j.chemosphere.2017.05.177
  14. Jing, W., L. Lang, Z. Lin, N. Liu and L. Wang. 2019. Cadmium bioaccumulation and elimination in tissues of the freshwater mussel Anodonta woodiana. Chemosphere 219: 321-327. https://doi.org/10.1016/j.chemosphere.2018.12.033
  15. Keshavarz Jamshidian, M., R.A. Verweij, C.A. Van Gestel and N. M. Van Straalen. 2017. Toxicokinetics and time-variable toxicity of cadmium in Oppia nitens Koch (Acari: Oribatida). Environmental Toxicology and Chemistry 36(2): 408-413. https://doi.org/10.1002/etc.3548
  16. Koagouw, W., R.J. Hazell and C. Ciocan. 2021. Induction of apoptosis in the gonads of Mytilus edulis by metformin and increased temperature, via regulation of HSP70, CASP8, BCL2 and FAS. Marine Pollution Bulletin 173: 113011.
  17. Li, X., W. Peng, Y. Jiang, Y. Duan, J. Ren, Y. Liu and W. Fan. 2017. The Daphnia magna role to predict the cadmium toxicity of sediment Bioaccumulation and biomarker response. Ecotoxicology and Environmental Safety 138: 206-214. https://doi.org/10.1016/j.ecoenv.2017.01.002
  18. Liu, J., L. Cao and S. Dou. 2017. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Marine Pollution Bulletin 117(1-2): 98-110. https://doi.org/10.1016/j.marpolbul.2017.01.062
  19. Liu, Y., X. Lin, Z. Hao, M. Yu, Y. Tang, X. Teng, W. Sun and L. Kang. 2023. Cadmium exposure caused cardiotoxicity in common carps (Cyprinus carpio L.): miR-9-5p, oxidative stress, energetic impairment, mitochondrial division/ fusion imbalance, inflammation, and autophagy. Fish & Shelfish Immunology 138: 108853.
  20. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
  21. Lobo, H., L. Mendez-Fernandez, M. Martinez-Madrid, P. Rodriguez, M. Daam and E.L. Espindola. 2021. Bioaccumulation and chronic toxicity of arsenic and zinc in the aquatic oligochaetes Branchiura sowerbyi and Tubifex tubifex (Annelida, Clitellata). Aquatic Toxicology 239: 105955.
  22. Mendez-Fernandez, L., M. Martinez-Madrid and P. Rodriguez. 2013. Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Muller) based on lethal and sublethal effects. Ecotoxicology 22: 1445-1460. https://doi.org/10.1007/s10646-013-1131-4
  23. Milani, D., T.B. Reynoldson, U. Borgmann and J. Kolasa. 2003. The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environmental Toxicology and Chemistry: An International Journal 22(4): 845-854.
  24. Ministry of Environmnet. 2015. Standard for contamination of river and lake sediments. National Institute of Environmental Research No 687.
  25. Qiao, S., G. Zeng, X. Wang, C. Dai, M. Sheng, Q. Chen, F. Xu and H. Xu. 2021. Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere 274: 129661.
  26. Scopetani, C., M. Esterhuizen, A. Cincinelli and S. Pflugmacher. 2020. Microplastics exposure causes negligible effects on the oxidative response enzymes glutathione reductase and peroxidase in the oligochaete Tubifex tubifex. Toxics 8(1): 14.
  27. Shahjahan, M., K. Taslima, M.S. Rahman, M. Al-Emran, S.I. Alam and C. Faggio. 2022. Effects of heavy metals on fish physiology - a review. Chemosphere 300: 134519.
  28. Sharma, P., P. Garai, P. Banerjee, S. Saha, A.V. Chukwuka, S. Chatterjee, N.C. Saha and C. Faggio. 2023. Behavioral toxicity, histopathological alterations and oxidative stress in Tubifex tubifex exposed to aromatic carboxylic acids-acetic acid and benzoic acid: A comparative time-dependent toxicity assessment. Science of The Total Environment 876: 162739.
  29. Simsek, A., J. Teuchies, H. Haghnazar, R. Blust and G. Bakan. 2023. Evaluation of bioaccumulation and toxicity of Tubifex tubifex exposed to contaminated river sediment by potnetially toxic elements - A case study of the Middle Black Sea, Turkey. Journal of Geochemical Exploration 107263.
  30. Stancova, V., A. Zikova, Z. Svobodova and W. Kloas. 2015. Effects of the non-steroidal anti-inflammatory drug (NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). Environmental Toxicology and Pharmacology 40(2): 343-348. https://doi.org/10.1016/j.etap.2015.07.009
  31. Steen Redeker, E., L. Bervoets and R. Blust. 2004. Dynamic model for the accumulation of cadmium and zinc from water and sediment by the aquatic oligochaete, Tubifex tubifex. Environmental Science & Technology 38(23): 6193-6200. https://doi.org/10.1021/es0496470
  32. Thit, A., G.T. Banta, A. Palmqvist and H. Selck. 2020. Effects of sediment-associated Cu on Tubifex tubifex - Insights gained by standard ecotoxicological and novel, but simple, bioturbation endpoints. Environmental Pollution 266:115251.
  33. U. S. EPA. 1991. Sediment quality guidelines. Draft report. EPA Region V Chicago II.
  34. Voets, J., E.S. Redeker, R. Blust and L. Bervoets. 2009. Differences in metal sequestration between zebra mussels from clean and polluted field locations. Aquatic Toxicology 93(1): 53-60. https://doi.org/10.1016/j.aquatox.2009.03.006
  35. Wang, L., L. Pan, N. Liu, D. Liu, C. Xu and J. Miao. 2011. Biomarkers and bioaccumulation of clam Ruditapes philippinarum in response to combined cadmium and benzo[α] pyrene exposure. Food and Chemical Toxicology 49(12): 3407-3417. https://doi.org/10.1016/j.fct.2011.06.015
  36. Wang, L., Y. Peng, X. Nie, B. Pan, P. Ku and S. Bao. 2016. Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 179: 49-56. https://doi.org/10.1016/j.cbpc.2015.08.010
  37. Wu, J.P., M.H. Li, J.S. Chen, S.Y. Chung and H.L. Lee. 2015. Disturbances to neurotransmitter levels and their metabolic enzyme activity in a freshwater planarian exposed to cadmium. Neurotoxicology 47: 72-81. https://doi.org/10.1016/j.neuro.2015.01.003
  38. Wu, X., Y. Jia and H. Zhu. 2012. Bioaccumulation of cadmium bound to ferric hydroxide and particulate organic matter by the bivalve M. meretrix. Environmental Pollution 165: 133-139. https://doi.org/10.1016/j.envpol.2012.02.023
  39. Xing, H., T. Liu, Z. Zhang, X. Wang and S. Xu. 2015. Acute and subchronic toxic effects of atrazine and chlorpyrifos on common carp (Cyprinus carpio L.): Immunotoxicity assessments. Fish & Shellfish Immunology 45(2): 327-333. https://doi.org/10.1016/j.fsi.2015.04.016
  40. Xu, X.H., X. Meng, H.T. Gan, T.H. Liu, H.Y. Yao, X.Y. Zhu, G.C. Xu and J.T. Xu. 2019. Immune response, MT and HSP70 gene expression, and bioaccumulation induced by lead exposure of the marine crab, Charybdis japonica. Aquatic Toxicology 210: 98-105. https://doi.org/10.1016/j.aquatox.2019.02.013
  41. Yuan, J., Z. Gu, Y. Zheng, Y. Zhang, J. Gao, S. Chen and Z. Wang. 2016. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii. Aquatic Toxicology 177: 8-18. https://doi.org/10.1016/j.aquatox.2016.05.004