DOI QR코드

DOI QR Code

Introducing the general management of glomerular disease from a pediatric perspective based on the updated KDIGO guidelines

  • Seon Hee Lim (Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine)
  • Received : 2023.06.01
  • Accepted : 2023.09.30
  • Published : 2023.12.31

Abstract

In 2021, a new chapter on the general management of glomerulonephritis (GN) was added to the Kidney Disease: Improving Global Outcomes (KDIGO). It emphasizes the importance of early general management of GN for improving long-term kidney outcomes and prognosis. The chapter introduces the management of glomerular diseases in 18 subchapters. Here, kidney biopsy for the diagnosis and evaluation of kidney function and the management of complications, such as hypertension, infection, and thrombosis, are presented. Moreover, the adverse effects of glucocorticoids and immunosuppressive therapy, which are commonly used drugs for glomerular disease, are mentioned, and a guideline for drug selection is presented. Each subtheme focused on items reflecting the interpretation of the "practice points" of the expert working group are introduced. In this review of the general treatment for GN in the KDIGO guidelines, excluding pregnancy and reproductive health, we focused on and compared various references pertaining to pediatric GN management.

Keywords

References

  1. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 2021;100(4S):S1-276. https://doi.org/10.1016/j.kint.2021.05.021
  2. Pettit C, Kanagaratnam R, Coughlan F, Graf N, Hahn D, Durkan A. Kidney biopsy adequacy and complications in children: does technique matter? Eur J Pediatr 2022;181:2677-84. https://doi.org/10.1007/s00431-022-04464-1
  3. Ding JJ, Lin SH, Huang JL, Wu TW, Hsia SH, Lin JJ, et al. Risk factors for complications of percutaneous ultrasound-guided renal biopsy in children. Pediatr Nephrol 2020;35:271-8. https://doi.org/10.1007/s00467-019-04367-8
  4. Jang KM, Cho MH. Clinical approach to children with proteinuria. Child Kidney Dis 2017;21:53-60. https://doi.org/10.3339/jkspn.2017.21.2.53
  5. Antunes VV, Veronese FJ, Morales JV. Diagnostic accuracy of the protein/creatinine ratio in urine samples to estimate 24-h proteinuria in patients with primary glomerulopathies: a longitudinal study. Nephrol Dial Transplant 2008;23:2242-6. https://doi.org/10.1093/ndt/gfm949
  6. Leung AK, Wong AH, Barg SS. Proteinuria in children: evaluation and differential diagnosis. Am Fam Physician 2017;95:248-54.
  7. Pierce CB, Munoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ. Age-and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 2021;99:948-56. https://doi.org/10.1016/j.kint.2020.10.047
  8. Hoste L, Dubourg L, Selistre L, De Souza VC, Ranchin B, Hadj-Aissa A, et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant 2014;29:1082-91. https://doi.org/10.1093/ndt/gft277
  9. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 2016;31:798-806. https://doi.org/10.1093/ndt/gfv454
  10. Kohler H, Wandel E, Brunck B. Acanthocyturia: a characteristic marker for glomerular bleeding. Kidney Int 1991;40:115-20. https://doi.org/10.1038/ki.1991.188
  11. Hamadah AM, Gharaibeh K, Mara KC, Thompson KA, Lieske JC, Said S, et al. Urinalysis for the diagnosis of glomerulonephritis: role of dysmorphic red blood cells. Nephrol Dial Transplant 2018;33:1397-403. https://doi.org/10.1093/ndt/gfx274
  12. Kaku Y, Ohtsuka Y, Komatsu Y, Ohta T, Nagai T, Kaito H, et al. Clinical practice guideline for pediatric idiopathic nephrotic syndrome 2013: general therapy. Clin Exp Nephrol 2015;19:34-53. https://doi.org/10.1007/s10157-014-1031-9
  13. Gupta S, Pepper RJ, Ashman N, Walsh SB. Nephrotic syndrome: oedema formation and its treatment with diuretics. Front Physiol 2019;9:1868.
  14. Bockenhauer D. Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol 2013;28:1153-6. https://doi.org/10.1007/s00467-013-2435-6
  15. Polderman N, Cushing M, McFadyen K, Catapang M, Humphreys R, Mammen C, et al. Dietary intakes of children with nephrotic syndrome. Pediatr Nephrol 2021;36:2819-26. https://doi.org/10.1007/s00467-021-05055-2
  16. Momoniat T, Ilyas D, Bhandari S. ACE inhibitors and ARBs: managing potassium and renal function. Cleve Clin J Med 2019;86:601-7. https://doi.org/10.3949/ccjm.86a.18024
  17. Toblli JE, Bevione P, Di Gennaro F, Madalena L, Cao G, Angerosa M. Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol 2012;2012:546039.
  18. Schmidt M, Mansfield KE, Bhaskaran K, Nitsch D, Sorensen HT, Smeeth L, et al. Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: cohort study. BMJ 2017;356:j791.
  19. Stotter BR, Ferguson MA. Should ACE inhibitors and ARBs be used in combination in children? Pediatr Nephrol 2019;34:1521-32. https://doi.org/10.1007/s00467-018-4046-8
  20. Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis 2008;51:199-211. https://doi.org/10.1053/j.ajkd.2007.10.040
  21. Zhang Z, Wu P, Zhang J, Wang S, Zhang G. The effect of statins on microalbuminuria, proteinuria, progression of kidney function, and all-cause mortality in patients with non-end stage chronic kidney disease: a meta-analysis. Pharmacol Res 2016;105:74-83. https://doi.org/10.1016/j.phrs.2016.01.005
  22. Chapter 4: Pharmacological cholesterol-lowering treatment in children. Kidney Int Suppl (2011) 2013;3:282-3. https://doi.org/10.1038/kisup.2013.36
  23. Sunil B, Foster C, Wilson DP, Ashraf AP. Novel therapeutic targets and agents for pediatric dyslipidemia. Ther Adv Endocrinol Metab 2021;12:204201882110583.
  24. Phan BA, Dayspring TD, Toth PP. Ezetimibe therapy: mechanism of action and clinical update. Vasc Health Risk Manag 2012;8:415-27.
  25. Katzmann JL, Gouni-Berthold I, Laufs U. PCSK9 inhibition: insights from clinical trials and future prospects. Front Physiol 2020;11:595819.
  26. Lin R, McDonald G, Jolly T, Batten A, Chacko B. A systematic review of prophylactic anticoagulation in nephrotic syndrome. Kidney Int Rep 2019;5:435-47.
  27. Kerlin BA, Haworth K, Smoyer WE. Venous thromboembolism in pediatric nephrotic syndrome. Pediatr Nephrol 2014;29:989-97. https://doi.org/10.1007/s00467-013-2525-5
  28. Andolino TP, Reid-Adam J. Nephrotic syndrome. Pediatr Rev 2015;36:117-26. https://doi.org/10.1542/pir.36-3-117
  29. Park SJ, Shin JI. Complications of nephrotic syndrome. Korean J Pediatr 2011;54:322-8. https://doi.org/10.3345/kjp.2011.54.8.322
  30. Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N Engl J Med 2004;351:868-75. https://doi.org/10.1056/NEJMoa040367
  31. Mauras N. Growth hormone therapy in the glucocorticosteroid-dependent child: metabolic and linear growth effects. Horm Res 2001;56 Suppl 1:13-8. https://doi.org/10.1159/000048128
  32. Sampathkumar K, Ramalingam R, Prabakar A, Abraham A. Acute interstitial nephritis due to proton pump inhibitors. Indian J Nephrol 2013;23:304-7. https://doi.org/10.4103/0971-4065.114487
  33. Li Y, Xiong M, Yang M, Wang L, Nie S, Liu D, et al. Proton pump inhibitors and the risk of hospital-acquired acute kidney injury in children. Ann Transl Med 2020;8:1438.
  34. Ueda N, Kuno K, Ito S. Eight and 12 week courses of cyclophosphamide in nephrotic syndrome. Arch Dis Child 1990;65:1147-50. https://doi.org/10.1136/adc.65.10.1147
  35. Sinha A, Bagga A. Rituximab therapy in nephrotic syndrome: implications for patients' management. Nat Rev Nephrol 2013;9:154-69. https://doi.org/10.1038/nrneph.2012.289
  36. Labrosse R, Barmettler S, Derfalvi B, Blincoe A, Cros G, Lacombe-Barrios J, et al. Rituximab-induced hypogammaglobulinemia and infection risk in pediatric patients. J Allergy Clin Immunol 2021;148:523-32. https://doi.org/10.1016/j.jaci.2021.03.041
  37. Uauy RD, Hogg RJ, Brewer ED, Reisch JS, Cunningham C, Holliday MA. Dietary protein and growth in infants with chronic renal insufficiency: a report from the Southwest Pediatric Nephrology Study Group and the University of California, San Francisco. Pediatr Nephrol 1994;8:45-50. https://doi.org/10.1007/BF00868260
  38. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet 1997;349:1117-23. https://doi.org/10.1016/S0140-6736(96)09260-4
  39. Shaw V, Polderman N, Renken-Terhaerdt J, Paglialonga F, Oosterveld M, Tuokkola J, et al. Energy and protein requirements for children with CKD stages 2-5 and on dialysis-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol 2020;35:519-31. https://doi.org/10.1007/s00467-019-04426-0