DOI QR코드

DOI QR Code

Development of a Practical Surface Image Velocimeter using Spatio-Temporal Images

시공간영상을 이용한 실용적인 표면영상유속계 개발

  • Yunho Lee (HydroSEM Co., Ltd.) ;
  • Kwonkyu Yu (Department of Civil Engineering, Dong-eui University)
  • Received : 2023.12.18
  • Accepted : 2023.12.21
  • Published : 2023.12.31

Abstract

The purpose of this study is to present the most appropriate hardware and software configurations to produce a practical SIV (surface image velocimeter). To make a practical SIV, we constructed the system with a CCTV, a water stage gauge, and an analysis software installed on an Android board. The camera captures continuously images for 30 seconds with 2 minute intervals. And the 11-parameter projection method was used in the software that analyzes the captured images to reconstruct the exact measurement points according to the changing water stage. In addition, a spatio-temporal image construction method was developed so that the directions of the images could be arranged in the main flow direction at each measurement point. The surface image velocimeter composed of the proposed method was produced and installed at the Insu Stream, Seoul for a test site. And a result of measurement during a heavy rainfall event showed that the proposed system can measure flow discharge in proper, rapid and continuous manner.

본 연구의 목표는 실용적인 표면영상유속계를 만들기 위해 가장 적절한 하드웨어와 소프트웨어의 구성을 제시하는 것이다. 실용적인 표면영상유속계 구성을 위해 하드웨어로 CCTV를 선택하고, 2분 간격으로 30초간의 영상을 지속적으로 촬영하는 장비를 구성하였다. 촬영된 동영상을 분석하는 소프트웨어에는 11-변수 투영법을 적용하여 변화하는 수위에 따라 정확한 측정점을 재구성하도록 하였다. 아울러 각 측정점에서 주흐름방향으로 정확한 시공간영상을 작성할 수 있도록 시공간영상 작성법을 제안하였다. 제안된 방법으로 구성된 표면영상유속계를 제작하여 인수천에 시험적용하여 호우 사상에 대해 검토한 결과 정확하고 신속하며 연속적인 유량측정이 가능하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업 (2020003050002)의 지원을 받아 연구되었습니다

References

  1. Aya, S., Fujita, I., and Yagyu, M. 1995. Field-observation of flood in a river by video image analysis. Proc. of Hydraulic Engineering, JSCE 39: 447-452. (in Japanese)  https://doi.org/10.2208/prohe.39.447
  2. Bae, I., Yu, K., Yoon, B.M., and Kim, S. 2017. A study on the applicability of invisible environment of surface image velocimeter using far infrared camera. J. of KWRA 50(9): 597-607. (in Korean)  https://doi.org/10.3741/JKWRA.2017.50.9.597
  3. Cheong, T.S., Joo, J., Choi, H., and Kim, S. 2018. Development and evaluation of automatic discharge measurement technology for small stream monitoring. J. of Korean Society of Hazard Migigation 18(6): 347-355. (in Korean)  https://doi.org/10.9798/KOSHAM.2018.18.6.347
  4. Ettema, R., Fujita, I., Muste, M., and Kruger, A. 1997. Particle-image velocimetry for whole-field measurement of ice velocities. Cold Regions Science and Technology 26(2): 97-112.  https://doi.org/10.1016/S0165-232X(97)00011-6
  5. Fujita, I. 2017. Discharge measurements of snowmelt flood by space-time image velocimetry during the night using far-infrared camera. Water 9: 269. 
  6. Fujita, I., Ando, T., Tsutsumi, S., and Okabe, T. 2009. Flood flow measurements using STIV in worse imaging conditions. Annual Journal of Hydraulic Engineering, JSCE 53: 1003-1008. (in Japanese) 
  7. Fujita, I. and Hino, T. 2003. Unseeded and seeded PIV measurements of river flows videotaped from a helicopter. J. of Visualization 6(3): 245-252. (in Japanese)  https://doi.org/10.1007/BF03181465
  8. Fujita, I. and Komura, S. 1994. Application of video image analysis for measurements of river-surface flows. Proc. of Hydraulic Engineering, JSCE 38: 733-738. (in Japanese)  https://doi.org/10.2208/prohe.38.733
  9. Fujita, I., Kosaka, Y., Yorozuya, A., and Motonaga, Y. 2013. Surface flow measurement of snow melt flood by using a far infrared camera, J. of JSCE, B1 (Water Resources Engineering), 69(4): I_703-I_708. (in Japanese) 
  10. Fujita, I., Muste, M., and Kruger, A. 1998. Large-scale particle image velocimetry for flow analysis in hydraulic application. J. of Hydraulic Research 36(3): 397-414.  https://doi.org/10.1080/00221689809498626
  11. Fujita, I., Takehara, K., Aya, S., Sakai, N., Tamai, M., Takano, Y., and Miyamoto, H. 2002. Measurement of river flow by ITV video camera. Annual Journal of Hydraulic Engineering, JSCE 8: 459-464. (in Japanese) 
  12. Fujita, I. and Tsubaki, R. 2003. Convection velocity measurement of river surface ripples by using space-time image. J. of River Technology, JSCE 8: 55-60. (in Japanese) 
  13. Fujita, I., Watanabe, H., and Tsubaki, R. 2005. Efficient analysis method for river flow measurement using space-time images. Proc. of 31th IAHR Congress, Seoul, Korea. 
  14. Hauet, A., Creutin, J.D., and Belleudy, P. 2008. Sensitivity study of large-scale particle image velocimetry measurement of river discharge using numerical simulation. J. Hydrology 349(1-2): 178-190.  https://doi.org/10.1016/j.jhydrol.2007.10.062
  15. KIHS (Korea Institute of Hydrological Survey). 2018. Manual of flow discharge measurement (Ver 1.1). (in Korean) 
  16. Kim, S. 2013. Determination of interrogation-area size based on error analysis for the surface image velocimetry, Ph.D thesis, Department of Civil and Environmental Engineering, Myong-ji University. (in Korean) 
  17. Kim, Y., Won, N.I., Noh, J., and Park, W.C. 2015. Development of high-performance microwave water surface current meter for general use to extend the applicable velocity range of microwave water surface current meter on river discharge measurement, J. of KWRA 48(8): 613-623. (in Korean)  https://doi.org/10.3741/JKWRA.2015.48.8.613
  18. Kim, S.J., Yu, K., and Yoon, B.M. 2011. Real-time discharge measurement of the river using Fixed-type Surface Image Velocimetry. J. of KWRA 44(5): 377-388. (in Korean)  https://doi.org/10.3741/JKWRA.2011.44.5.377
  19. Lee, Y. 2023. Develpment of spatio-temporal image velocimetry based on FFT for low flow meaurement. Ph.D thesis. Department of Civil and Environmental Engineering, Myong-ji University. 
  20. Miyaura, E., Nakajima, Y., and Yoshimura, A. 2012. Fixed Microwave Current Meter and RYUKAN, facing pratical and full-fledged use. New Era of River Water Discharge Water Measurement 3: 55-60 (in Japanese) 
  21. Notoya, Y., Fujita, I., and Tateguchi, S. 2017. Development of river surface velocity vectors by using three dimensional space-time volume of surface images. J. of JSCE, B1(Water Engineering), 73(4): I_511-I_516. (in Japanese) 
  22. PWRI (Public Works Research Institute). 2016. Manual of advanced flow measurement (flood flow measurement) Ver. 1.2. (in Japanese) 
  23. Raffel, M., Willert, C.E., Scarano, F., Kohler, Wereley, S.T., and Kompenhans, J. 2018. Particle image velocimetry, a practical guide. 3rd edition, Springer. 
  24. Yu, K., Kim, S., and Kim, D. 2014. Measurement of two-dimensional velocity distribution of spatio-temporal image velocimeter using cross-correlation analysis. J. of KWRA 47(6): 537-546. (in Korean)  https://doi.org/10.3741/JKWRA.2014.47.6.537
  25. Yu, K., Kim, S., and Kim, D. 2015. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition. J. of Hydrology 529: 1810-1822.  https://doi.org/10.1016/j.jhydrol.2015.08.005
  26. Yu, K. and Liu, B. 2021. Calculation of surface image velocity fields by analyzing spatio-temporal volumes with the fast Fourier transform. J. of KWRA 54(11): 933-942. (in Korean) 
  27. Yu, K. and Park, M.H. 2016. Particle image velocimetry. CIR. (in Korean) 
  28. Yu, K. and Whang, J.G. 2016. Development of real-time surface image velocimeter using an android smartphone. J. of KWRA 49(6): 469-480. (in Korean)  https://doi.org/10.3741/JKWRA.2016.49.6.469
  29. Zhang, Z., Wang, H., Yan, X., Gao, H., and Li, C. 2017. Sensitivity analysis and uncertainty evaluation of spacetime image velocimetry. Chinese Journal of Scientific Instrument 38(7), 1763-1771. (in Chinese)