DOI QR코드

DOI QR Code

Development of Turbidity Backward Tracking Scheme Using Py_STPS Model and Monitoring Data

Py_STPS모형과 관측자료를 활용한 탁도역추적기법 개발

  • Hong Koo Yeo (Dept. of Hydro Science & Engineering Research, Korea Institute of Civll Engineering and Building Technology) ;
  • Namjoo Lee (Dept. of Civil Eng., Kyungsung University)
  • 여홍구 (한국건설기술연구원 수자원하천연구본부) ;
  • 이남주 (경성대학교 토목공학과)
  • Received : 2023.11.20
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

In order to develop a backtracking technique for turbidity measurement data without discriminatory characteristics, three turbidity backtracking techniques for predicting inflow turbidity of a stream were compared using real-time turbidity data measured at automatic water quality measurement points located upstream and downstream of the stream and the Py_STPS model. Three turbidity backtracking techniques were applied: 1) simple preservation method of turbidity load considering flow time, 2) a method of using the flow rate at the upstream boundary considering the flow time as the flow rate at the downstream boundary, 3) method of introducing internal reaction rate to reflect the behavior characteristics of turbidity-causing substances. As a result of applying the three backtracking models, it was confirmed that the backtracking technique that introduced the internal reaction rate had the best results.

차별적 특징을 갖지 않는 탁도 측정자료에 대한 역추적기법을 개발하고자 지천의 상류와 하류에 위치한 수질자동측정점에서 측정된 실시간 탁도자료와 Py_STPS모형을 사용하여 지천의 유입탁도를 예측하는 세 가지 탁도역추적기법을 비교하였다. 유하시간을 고려한 탁도부하량 단순보존 방법, 유하시간을 고려한 상류경계의 유량을 하류경계의 유량으로 사용하는 방법, 탁도 유발물질의 거동특성을 반영하기 위해 내부반응률을 도입한 방법 세 가지 탁도 역추적기법을 적용하였다. 세 가지 역추적모형의 적용 결과, 내부반응률을 도입한 역추적기법의 결과가 가장 우수함을 확인할 수 있었다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다 (2020003050002).

References

  1. Bae, M., Kim, H.C., Kim, B.-U., and Kim, S. 2017. Development and application of the backward-tracking model analyzer to track physical and chemical processes of air parcels during the transport. J. of Korean Society for Atmospheric Environment 33(3): 217-232. (in Korean) https://doi.org/10.5572/KOSAE.2017.33.3.217
  2. Hopke, P.K., Ramadan, Z. Paatero, P. Norris, G.A. Landis, M.S. Williams, R.W. and Lewis, C.W. 2003. Receptor modeling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure study. Atmospheric Environment 37: 3289-3302. https://doi.org/10.1016/S1352-2310(03)00331-5
  3. Kim, J.T., Han, M.H., Lee, J.H., Kim, J.H., and Kim, I.K. 2014. Technical Trends of the Cyber Attack Traceback. Electronics and Telecommunications Trends 29(1): 93-103. (in Korean) https://doi.org/10.3346/jkms.2014.29.7.903
  4. Kim, T.B. and Choi, U.H. 2005. Analysis of trends and application cases of backtracking technology. Review of KIISC 15(1): 98-103. (in Korean)
  5. Kwon, S.Y., Seo, I.W., and Noh, H. 2019. Development of contaminant source inverse tracking model considering transient storage zone characteristics. Proc. of KSCE 2019 Convention, WE17-WE18. (in Korean)
  6. Lee, J.H., Kim, S.J., and Jeong, J.H. 2007. Source apportionment of aerosols using air parcel backward trajectories. Chungnam Nat'l. U., Report no.: KAERI/CM-1151-2006. (in Korean)
  7. Lee, N. and Heo, S. N. 2007. Development of STPS for turbidity prediction along the Nakdong River due to very fine soil. J. of Korean Society of Water Science and Technology 15(3): 11-21. (in Korean)
  8. Lee, N. and Kim, C.S. 2023. An Applicability Review on Simplified Turbidity Prediction Model Py_STPS Using the Measured Data of the Nakdong River. J. of the Korea Academia-Industrial Cooperation Society 24(2): 521-529. (in Korean) https://doi.org/10.5762/KAIS.2023.24.2.521
  9. Lee, N., Choi, S., and Kim, C.-S. 2021. Applicability test of STPS for HEC-RAS-based turbidity prediction model in the Nagdonggang. Ecology and Resilient Infrastructure 8(4): 245-252. https://doi.org/10.17820/ERI.2021.8.4.245
  10. Lupu, A. and Maenhaut, W. 2002. Application and comparison of two statistical trajectory techniques for identification of source regions of atmospheric aerosol species. Atmospheric Environment 36(36-37): 5607-5618. https://doi.org/10.1016/S1352-2310(02)00697-0
  11. NIER, 2012. A study on tracking sources of pollutants using heavy metal isotope analysis (1). NIER-RP2012-303. (in Korean)
  12. Park, H.Y., Park, H.S., Lee, B.R., Choi, H.J., Kim, H.R., Lim, H.J., Park, C.O, Kim, I.S., Park, G.H., Jeon, D.Y., and Bae, M.S. 2022. Source assessment of PM-2.5 in the residential areas of Gwangyang Bay using source apportionment model(II). J. of Environmental Analysis, Health and Toxicology 25(1): 18-32. (in Korean) https://doi.org/10.36278/jeaht.25.1.18