DOI QR코드

DOI QR Code

Anti-skinaging effects of Gryllus bimaculatus on ERM-CZ100-exposed human diploid fibroblasts

미세먼지 유발 피부노화에 대한 쌍별귀뚜라미의 예방 효과

  • Kyong Kim (Department of Food and Nutrition, Eulji University) ;
  • Chae-Heon Lee (Department of Food and Nutrition, Eulji University) ;
  • Eun-Young Park (College of Pharmacy and Natural Medicine Research Institute, Mokpo National University) ;
  • Yoon Sin Oh (Department of Food and Nutrition, Eulji University)
  • 김경 (을지대학교 식품영양학과) ;
  • 이채헌 (을지대학교 식품영양학과) ;
  • 박은영 (목포대학교 약학대학) ;
  • 오윤신 (을지대학교 식품영양학과)
  • Received : 2023.09.12
  • Accepted : 2023.11.02
  • Published : 2023.12.31

Abstract

Purpose: Increasing levels of domestic fine dust (DFD) have emerged as a serious problem that threatens public health by causing chronic respiratory diseases and skin aging. The present study was performed to investigate the inhibitory effects of Gryllus bimaculatus (the two-spotted cricket), which has recently attracted attention as an edible insect in South Korea, on DFD-induced aging and inflammation. Methods: To verify that DFD causes skin aging and investigate the anti-aging effect of an aqueous ethanolic-Gryllus bimaculatus extract (AE-GBE), human diploid fibroblasts (HDF) were treated with 100 ㎍/mL of European reference material (ERM)-CZ100 dust for 24 hrs in the presence or absence of 100 ㎍/ml AE-GBE. Aging and cellular toxicities were assessed by measuring reactive oxygen species (ROS) levels, DNA fragmentation, and β-galactosidase activity. The protein levels of cyclooxygenase (COX) 2, matrix metalloproteinase (MMP)-1, and collagen were measured by western blot, and the mRNA expressions of inflammation-related genes were assayed by quantitative reverse transcriptase polymerase chain reaction. Results: Treatment with ERM-CZ100 induced an aged phenotype in HDF cells, as evidenced by increased ROS levels, DNA fragmentation, and senescence-associated β-galactosidase activity, but cotreatment with AE-GBE significantly reduced these inductions. The mRNA expressions of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, induced by ERM-CZ100 were also reduced by AE-GBE cotreatment, which also reduced COX2 expression. Moreover, ERM-CZ100-induced MMP-1 expression and reduced collagen type I expression were recovered by AE-GBE treatment. Conclusion: These results suggest that AE-GBE is a potential treatment for domestic fine dust-induced skin inflammation and inflammaging.

국내 미세먼지의 증가는 만성 호흡기 질환과 피부 염증 및 노화를 유발하여 국민 전체의 건강을 위협하는 심각한 문제로 대두되었다. 본 연구는 미세먼지 유발 피부 염증과 노화에 대해 식용곤충인 쌍별귀뚜라미 70% 에탄올 추출물 (AE-GBE)의 미세먼지에 대한 활성산소 소거능, 세포내 β-galactosidase 효소 활성, MMP-1 발현, 콜라겐 생성, 그리고 염증성 반응에 대해 알아보았다. AE-GBE는 HDF 세포에서 ERM-CZ100에 의해 유도될 수 있는 활성산소종, DNA 단편화 수준 및 β-galactosidase 활성을 유의하게 감소시켰다. 또한 IL-1β, IL-6, TNF-α와 같은 전염증성 사이토카인의 생성과 이들 사이토카인에 의해 발현되는 것으로 알려진 COX2 단백질의 발현을 현저히 감소시켰으며, MMP-1을 억제하여 콜라겐 분해를 막았다. 따라서 본 연구결과는 쌍별귀뚜라미 추출물이 미세먼지 유발 피부 염증에 대한 잠재적인 치료 표적이 될 수 있으며 더 나아가 피부 노화를 늦추는 데 긍정적인 효과를 가질 수 있음을 시사한다.

Keywords

Acknowledgement

This study was supported by Basic Science Research Program Grant (NRF2021R1F1A1050949) provided by the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science, ICT and Future Planning and supported by 2023 Eulji University Innovation Support Project grant funded.

References

  1. Savitz DA, Elston B, Bobb JF, Clougherty JE, Dominici F, Ito K, et al. Ambient fine particulate matter, nitrogen dioxide, and hypertensive disorders of pregnancy in New York City. Epidemiology 2015; 26(5): 748-757.  https://doi.org/10.1097/EDE.0000000000000349
  2. Kim KE, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 2016; 152: 126-134.  https://doi.org/10.1016/j.lfs.2016.03.039
  3. Lundgren DA, Hlaing DN, Rich TA, Marple VA. PM10/PM2.5/PM1 data from a trichotomous sampler. Aerosol Sci Technol 1996; 25(3): 353-357.  https://doi.org/10.1080/02786829608965401
  4. Song SH, Paek D, Lee YM, Lee CW, Park CH, Yu SD. Ambient fine and ultrafine particle measurements and their correlations with particulate PAHs at an elementary school near a highway. Asian J Atmos Environ 2012; 6(2): 96-103.  https://doi.org/10.5572/ajae.2012.6.2.096
  5. Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the skin. J Invest Dermatol 2021; 141(4): 1087-1095.  https://doi.org/10.1016/j.jid.2020.11.006
  6. Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular senescence and inflammaging in the skin microenvironment. Int J Mol Sci 2021; 22(8): 3849. 
  7. Dooms-Goossens AE, Debusschere KM, Gevers DM, Dupre KM, Degreef HJ, Loncke JP, et al. Contact dermatitis caused by airborne agents. A review and case reports. J Am Acad Dermatol 1986; 15(1): 1-10.  https://doi.org/10.1016/S0190-9622(86)70135-7
  8. Jeong SC, Shin CY, Song MK, Cho Y, Ryu JC. Gene expression profiling of human alveolar epithelial cells (A549 cells) exposed to atmospheric particulate matter 2.5 (PM2.5) collected from Seoul, Korea. Mol Cell Toxicol 2014; 10(4): 361-368.
  9. Charoud-Got J, Emma G, Seghers J, Tumba-Tshilumba MF, Santoro A, Held A, et al. Preparation of a PM2.5-like reference material in sufficient quantities for accurate monitoring of anions and cations in fine atmospheric dust. Anal Bioanal Chem 2017; 409(30): 7121-7131.  https://doi.org/10.1007/s00216-017-0670-6
  10. Fernando IP, Kim HS, Sanjeewa KK, Oh JY, Jeon YJ, Lee WW. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae. Algae 2017; 32(3): 261-273.  https://doi.org/10.4490/algae.2017.32.8.14
  11. Sarialtin SY, Acikara OB. Assessment of correlation analysis, phytochemical profile, and biological activities of endemic Scorzonera species from Turkey. Chem Biodivers 2022; 19(10): e202200007. 
  12. Na EJ, Jang HH, Kim GR. Review of recent studies and research analysis for anti-oxidant and anti-aging materials. Asian J Beauty Cosmetol 2016; 14(4): 481-491.  https://doi.org/10.20402/ajbc.2016.0107
  13. Atoui AK, Mansouri A, Boskou G, Kefalas P. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 2005; 89(1): 27-36.  https://doi.org/10.1016/j.foodchem.2004.01.075
  14. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs 2014; 12(1): 128-152.  https://doi.org/10.3390/md12010128
  15. Lee JH, Yun CW, Hur J, Lee SH. Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar Drugs 2018; 16(4): 121. 
  16. Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: a review. Curr Res Food Sci 2021; 4: 200-214.  https://doi.org/10.1016/j.crfs.2021.03.011
  17. Giampieri F, Alvarez-Suarez JM, Machi M, Cianciosi D, Navarro-Hortal MD, Battino M. Edible insects: a novel nutritious, functional, and safe food alternative. Food Frontiers 2022; 3(3): 358-365.  https://doi.org/10.1002/fft2.167
  18. Kourimska L, Adamkova A. Nutritional and sensory quality of edible insects. NFS Journal 2016; 4: 22-26.  https://doi.org/10.1016/j.nfs.2016.07.001
  19. Aiello D, Barbera M, Bongiorno D, Cammarata M, Censi V, Indelicato S, et al. Edible insects an alternative nutritional source of bioactive compounds: a review. Molecules 2023; 28(2): 699. 
  20. Di Mattia C, Battista N, Sacchetti G, Serafini M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front Nutr 2019; 6: 106. 
  21. Nino MC, Reddivari L, Osorio C, Kaplan I, Liceaga AM. Insects as a source of phenolic compounds and potential health benefits. J Insects Food Feed 2021; 7(7): 1077-1087.  https://doi.org/10.3920/JIFF2020.0113
  22. Hee Sun C, Su Yeon K, Sung Ryun C, Hyeon Il P, Ji Eun B, Ji Su K, et al. Characteristics of quality and antioxidant activation of the cookies adding with mealworm (Tenebrio molitor) and black bean powder. J Food Hyg Saf 2017; 32(6): 521-530.  https://doi.org/10.13103/JFHS.2017.32.6.521
  23. Lim HJ, Byun EH. Evaluation of anti-cancer activity of Gryllus bimaculatus water extract on non-small cancer lung cell via apoptosis. Prev Nutr Food Sci 2021; 26(4): 453-458.  https://doi.org/10.3746/pnf.2021.26.4.453
  24. Han JS. Nutritional value and anti-inflammation activity of misutkaru with added Gryllus bimaculatus powder. Asian J Beauty Cosmetol 2021; 19(3): 467-476.  https://doi.org/10.20402/ajbc.2021.0203
  25. Ahn MY, Hwang JS, Yun EY, Kim MJ, Park KK. Anti-aging effect and gene expression profiling of aged rats treated with G. bimaculatus extract. Toxicol Res 2015; 31(2): 173-180.  https://doi.org/10.5487/TR.2015.31.2.173
  26. Hwang BB, Chang MH, Lee JH, Heo W, Kim JK, Pan JH, et al. The edible insect Gryllus bimaculatus protects against gut-derived inflammatory responses and liver damage in mice after acute alcohol exposure. Nutrients 2019; 11(4): 857. 
  27. Kim SH, Kim Y, Han JS. Antioxidant activities and nutritional components of cricket (Gryllus bimaculatus) powder and protein extract. Asian J Beauty Cosmetol 2020; 18(2): 163-172. https://doi.org/10.20402/ajbc.2020.0016
  28. Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP, et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 2004; 279(40): 42270-42278.  https://doi.org/10.1074/jbc.M402352200
  29. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 1991; 51(10): 2515-2520. 
  30. Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J Immunol Methods 1992; 156(1): 39-45.  https://doi.org/10.1016/0022-1759(92)90008-H
  31. Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N. Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 2012; 303(12): F1641-F1651.  https://doi.org/10.1152/ajprenal.00460.2012
  32. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009; 8(1): 18-30.  https://doi.org/10.1016/j.arr.2008.07.002
  33. Kim J, Kim EH, Oh I, Jung K, Han Y, Cheong HK, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution. J Allergy Clin Immunol 2013; 132(2): 495-8.e1.  https://doi.org/10.1016/j.jaci.2013.04.019
  34. Huss-Marp J, Eberlein-Konig B, Breuer K, Mair S, Ansel A, Darsow U, et al. Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals. Clin Exp Allergy 2006; 36(3): 338-345.  https://doi.org/10.1111/j.1365-2222.2006.02448.x
  35. Vierkotter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinol 2012; 4(3): 227-231.  https://doi.org/10.4161/derm.19858
  36. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2(1): 10. 
  37. Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol 2018; 92(6): 2077-2091.  https://doi.org/10.1007/s00204-018-2197-9
  38. Farah MA, Ali MA, Chen SM, Li Y, Al-Hemaid FM, Abou-Tarboush FM, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B Biointerfaces 2016; 141: 158-169.  https://doi.org/10.1016/j.colsurfb.2016.01.027
  39. Wei H, Feng Y, Liang F, Cheng W, Wu X, Zhou R, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology 2017; 380: 94-103.  https://doi.org/10.1016/j.tox.2017.01.017
  40. Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor. Immunology 1989; 68(1): 31-36. 
  41. Amaro-Ortiz A, Yan B, D'Orazio JA. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 2014; 19(5): 6202-6219.  https://doi.org/10.3390/molecules19056202
  42. Jin SP, Li Z, Choi EK, Lee S, Kim YK, Seo EY, et al. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci 2018; 91(2): 175-183.  https://doi.org/10.1016/j.jdermsci.2018.04.015
  43. Park SY, Byun EJ, Lee JD, Kim S, Kim HS. Air pollution, autophagy, and skin aging: impact of particulate matter (PM10) on human dermal fibroblasts. Int J Mol Sci 2018; 19(9): 2727. 
  44. Kim M, Kim JH, Jeong GJ, Park KY, Lee MK, Seo SJ. Particulate matter induces pro-inflammatory cytokines via phosphorylation of p38 MAPK possibly leading to dermal inflammaging. Exp Dermatol 2019; 28(7): 809-815. https://doi.org/10.1111/exd.13943
  45. Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal 2018; 12(1): 35-43.  https://doi.org/10.1007/s12079-018-0459-1
  46. Roh E, Kim JE, Kwon JY, Park JS, Bode AM, Dong Z, et al. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit Rev Food Sci Nutr 2017; 57(8): 1631-1637.  https://doi.org/10.1080/10408398.2014.1003365
  47. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 2006; 168(6): 1861-1868.  https://doi.org/10.2353/ajpath.2006.051302
  48. Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: targeting inflammation, wound healing, and photo-aging. Phytomedicine 2023; 115: 154824. 
  49. Borg M, Brincat S, Camilleri G, Schembri-Wismayer P, Brincat M, Calleja-Agius J. The role of cytokines in skin aging. Climacteric 2013; 16(5): 514-521.  https://doi.org/10.3109/13697137.2013.802303