Acknowledgement
A. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2023-0109". B. This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Amlashi, A.T., Abdollahi, S.M., Goodarzi, S. and Ghanizadeh, A. R. (2019), "Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete", J. Clean. Prod., 230, 1197-1216. https://doi.org/10.1016/j.jclepro.2019.05.168
- Ashrafian, A., Taheri Amiri, M. J., Rezaie-Balf, M., Ozbakkaloglu, T. and Lotfi-Omran, O. (2018), "Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods", Constr. Build. Mater., 190, 479-494. https://doi.org/10.1016/j.conbuildmat.2018.09.047
- Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258
- Dao, D., Ly, H.B., Trinh, S., Le, T.T. and Pham, B. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Materials, 12(6), 983. https://doi.org/10.3390/ma12060983
- Dutta, D., Barai, S.V. (2019), Prediction of Compressive Strength of Concrete: Machine Learning Approaches, Recent Advances in Structural Engineering, 1. Lecture Notes in Civil Engineering, 11, Springer, Singapore.
- Gandomi, A.H., Sajedi, S., Kiani, B. and Huang, Q. (2016), "Genetic programming for experimental big data mining: A case study on concrete creep formulation", Auto. Constr., 70, 89-97. https://doi.org/10.1016/j.autcon.2016.06.010
- He, H.E.S., Ai, L., Wang, X., Yao, J., He, C. and Cheng, B. (2023), "Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors", J. Clean. Prod., 419, 138210. https://doi.org/10.1016/j.jclepro.2023.138210
- Huang, H., Guo, M., Zhang, W. and Huang, M. (2022), "Seismic behavior of strengthened rc columns under combined loadings", J. Bridge Eng., 27(6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871
- Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266
- Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725
- Jin, M., Ma, Y., Li, W., Huang, J., Yan, Y., Zeng, H., Lu, C. and Liu, J. (2023), "Multi-scale investigation on composition-structure of C-(A)-S-H with different Al/Si ratios under attack of decalcification action", Cement Concr. Res., 172, 107251. https://doi.org/10.1016/j.cemconres.2023.107251
- Liu, C., Peng, Z., Cui, J., Huang, X., Li, Y. and Chen, W. (2023), "Development of crack and damage in shield tunnel lining under seismic loading: Refined 3D finite element modeling and analyses", Thin Wall. Struct., 185, 110647. https://doi.org/10.1016/j.tws.2023.110647
- Li, B., Ke, G. and Zhou, M. (2011), "Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete", Constr. Build. Mater., 25(10), 3849-3853. https://doi.org/10.1016/j.conbuildmat.2011.04.004
- Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment", Constr. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071
- Lokuge, W., Wilson, A., Gunasekara, C., Law, D.W. and Setunge, S. (2018), "Design of fly ash geopolymer concrete mix proportions using multivariate adaptive regression spline model", Constr. Build. Mater., 166, 472-481. https://doi.org/10.1016/j.conbuildmat.2018.01.175
- Moradi, M.J., Khaleghi, M., Salimi, J., Farhangi, V. and Ramezanianpour, A.M. (2021), "Predicting the compressive strength of concrete containing metakaolin with different properties using ANN", Measurement, 183, 109790. https://doi.org/10.1016/j.measurement.2021.109790
- Peng, S., Chen, R., Yu, B., Xiang, M., Lin, X. and Liu, E. (2021), "Daily natural gas load forecasting based on the combination of long short term memory, local mean decomposition, and wavelet threshold denoising algorithm", J. Natur. Gas Sci. Eng., 95, 104175. https://doi.org/10.1016/j.jngse.2021.104175
- Rathakrishnan, V., Bt. Beddu, S. and Ahmed, A. N. (2022), "Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms", Sci. Rep., 12(1), 9539. https://doi.org/10.1038/s41598-022-12890-2
- Wang, W., Li, D.Q., Tang, X.S. and Du, W. (2023), "Seismic fragility and demand hazard analyses for earth slopes incorporating soil property variability", Soil Dyn. Earthq. Eng., 173, 108088. https://doi.org/10.1016/j.soildyn.2023.108088
- Yaseen, Z. M., Deo, R. C., Hilal, A., Abd, A. M., Bueno, L. C., Salcedo-Sanz, S. and Nehdi, M. L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Softw., 115, 112-125. https://doi.org/10.1016/j.advengsoft.2017.09.004
- Yuan, X., Chen, G., Jiao, P., Li, L., Han, J. and Zhang, H. (2022), "A neural network-based multivariate seismic classifier for simultaneous post-earthquake fragility estimation and damage classification", Eng. Struct., 255, 113918. https://doi.org/10.1016/j.engstruct.2022.113918
- Zhou, F., Jiang, H., Huang, L., Hu, Y., Xie, Z., Zeng, Z., Liu, M., Wang, B. and Zhou, X. (2023), "Early shrinkage modeling of complex internally confined concrete based on capillary tension theory", Buildings, 13(9), 2201. https://doi.org/10.3390/buildings13092201
- Zhou, F., Li, W., Hu, Y., Huang, L., Xie, Z., Yang, J., Wu, D. and Chen, Z. (2023a), "Moisture diffusion coefficient of concrete under different conditions", Buildings, 13(10), 2421. https://doi.org/10.3390/buildings13102421
- Zhou, S., Lu, C., Zhu, X. and Li, F. (2021b), "Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content", Engineering, 7(11), 1631-1645. https://doi.org/10.1016/j.eng.2020.10.016
- Zhang, J., Li, D. and Wang, Y. (2020), "Predicting mechanical properties of manufactured-sand concrete using tree-based machine learning models", J. Clean. Prod., 258, 120665. https://doi.org/10.1016/j.jclepro.2020.120665
- Zhao, S., Ding, X., Zhao, M., Li, C. and Pei, S. (2017), "Experimental study on tensile strength development of concrete with manufactured sand", Constr. Build. Mater., 138, 247-253. https://doi.org/10.1016/j.conbuildmat.2017.01.093
- Ziyad Sami, B.H., Ziyad Sami, B.F., Kumar, P., Ahmed, A.N., Amieghemen, G.E., Sherif, M. M. and El-Shafie, A. (2023), "Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms", Case Stud. Constr. Mater., 18, e01893. https://doi.org/10.1016/j.cscm.2023.e01893