DOI QR코드

DOI QR Code

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Amirhosein Abna (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Hossein Karimpour (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Mohammad Akbari-Jamkarani (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University)
  • Received : 2022.11.05
  • Accepted : 2023.08.17
  • Published : 2023.12.25

Abstract

In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Keywords

Acknowledgement

This work was supported by Shahid Rajaee Teacher Training University under grant number 4951.

References

  1. Abna, A. and Mazloom, M. (2022a), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.13200.
  2. Abna, A. and Mazloom, M. (2022b), "The effects of micro-silica and nano-silica on the workability and mechanical properties of self-compacting concrete containing polypropylene fibers", Amirkabir J. Civil Eng., 54(3), 1101-1118. https://doi.org/10.22060/CEEJ.2021.19252.7115.
  3. ACI 237 (2007), Self-Consolidating Concrete, American Concrete Institute.
  4. ACI Committee 544 Report (1994), Design Consideration for SFRC, ACI structural journal, 563-530.
  5. Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T (2016), "High-performance fiber-reinforced concrete: A review", J. Mater. Sci., 51(14), 6517-6551. https://doi.org/10.1007/s10853-016-9917-4.
  6. Afzali-Naniz, O. and Mazloom, M. (2018), "Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete", J. Build. Eng., 20, 400-410. https://doi.org/10.1016/j.jobe.2018.08.014.
  7. Afzali-Naniz, O. and Mazloom, M. (2019a), "Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asian J. Civil Eng., 20, 57-70. https://doi.org/10.1007/s42107-018-0088-2.
  8. Afzali-Naniz, O. and Mazloom, M. (2019b), "Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi: 10.1177/1369433219837426.
  9. Al-Hadithi, A.I., Noaman, A.T. and Mosleh, W.K. (2019), "Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC)", Compos. Struct., 224, 111021. https://doi.org/10.1016/j.conbuildmat.2019.08.029
  10. Altalabani, D., Bzeni, K. and Linsel, S. (2020), "Mechanical properties and load-deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete", Const. Build. Mater., 252, 119084 https://doi.org/10.1016/j.conbuildmat.2020.119084
  11. ASTM C1609/M-05 (2006), Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (using Beam with Third-point loading), ASTM International, West Conshohocken Pennsylvania.
  12. ASTM C1621 (2006), Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. ASTM International.
  13. ASTM C496/C496M (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International.
  14. ASTM C469/C469M (2010), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International.
  15. ASTM C33 (2013), Standard specification for concrete aggregates. Philadelphia, ASTM International.
  16. Bolander, E., Choi, S. and Duddukuri, S.R. (2008), "Fracture of fiber-reinforced cement composites: effects of fiber dispersion", Int. J. Fract., 154, 73-86. https://doi.org/10.1007/s10704-008-9269-4.
  17. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
  18. Broujerdian, V., Karimpour, H. and Alavikia, S. (2019), "Predicting the shear behavior of reinforced concrete beams using nonlinear fracture mechanics", Int. J. Civil Eng., 17(5), 597-605. https://doi.org/10.1007/s40999-018-0336-6.
  19. BS 1881: Part 116 (1983), Method for Determination of Compressive Strength of Concrete Cubes, British Standards.
  20. BS 1881: Part 117 (1983), Method for Determination of Tensile Splitting Strength, British Standards.
  21. C elik, Z. and Bingol, A.F. (2020), "Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC)", Mater. Struct., 53(3), 1-16. https://doi.org/10.1617/s11527-020-01487-8
  22. Cho, T. (2007), "Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method", Constr. Build. Mater., 21(12), 2031-2040. https://doi.org/10.1016/j.conbuildmat.2007.04.018
  23. Cihan, M.T., Guner, A. and Yuzer, N. (2013), "Response surfaces for compressive strength of concrete", Constr. Build. Mater., 40, 763-774. https://doi.org/10.1016/j.conbuildmat.2012.11.048
  24. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  25. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concr. Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  26. EFNARC, (2002), Specifications and Guidelines for Self-Compacting Concrete, ISBN 0953973344.
  27. Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919
  28. Horszczaruk, E., Mijowska, E., Cendrowski, K. and Sikora, P. (2014), "Influence of the new method of nano-silica addition on the mechanical properties of cement mortars", Cement, Wapno, Beton, 5, 308-316.
  29. Horszczaruk, E., Mijowska, E., Cendrowski, K., Mijowska, S. and Sikora, P. (2013), "The influence of nano-silica with different morphology on the mechanical properties of cement mortars", Cement, Wapno, Beton, 18/80(1), 24-32.
  30. Jena, B. and Mohanty, B.B. (2015), "Study on the mechanical properties and fracture behavior of chopped steel fiber reinforced self compacting concrete", Int. Res. J. Eng. Technol., 4(12), 166-170.
  31. Jena, B. and Patel, A. (2016), "Study on the mechanical properties and microstructure of chopped carbon fiber reinforced self compacting concrete", Technology, 7(3), 223-232.
  32. Kamal, M.M., Safan, M.A., Etman, Z.A. and Kasem, B.M. (2014), "Mechanical properties of self-compacted fiber concrete mixes", HBRC J., 10(1), 25-34. https://doi.org/10.1016/j.hbrcj.2013.05.012
  33. Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch-to-depth ratios", Comput. Concr, 22(1), 39-51. http://doi.org/10.12989/cac.2018.22.1.039.
  34. Karimpour, H. and Mazloom, M. (2022a)," Determining a novel softening function for modeling the fracture of concrete", Adv. Mater. Res., 11(4), 351. https://doi.org/10.12989/amr.2022.11.4.351
  35. Karimpour, H. and Mazloom, M. (2022b), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 81(5), 575-589. https://doi.org/10.12989/sem.2022.81.5.575.
  36. Li, J., Wan, C., Zhang, X. and Niu, J. (2020), "Fracture property of polypropylene fiber-reinforced lightweight concrete at high temperatures", Magazine Concr. Res., 72(22), 1147-1154. https://doi.org/10.1680/jmacr.17.00432
  37. Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt, and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. http://doi.org/10.12989/amr.2019.8.2.137.
  38. Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fiber-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concr. Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
  39. Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des, 6(3), 225-239. http://dx.doi.org/10.12989/acd.2021.6.3.225.
  40. Mazloom, M., Pourhaji, P. and Afzali-Naniz, O. (2021), "Effects of halloysite nanotube, nano-silica and micro-silica on rheology, hardened properties and fracture energy of SCLC", Struct. Eng. Mech., 80(1), 91-101. https://doi.org/10.12989/SEM.2021.80.1.091.
  41. Mazloom, M. and Ranjbar, A. (2010), "Relation between the workability and strength of self-compacting concrete", Proceedings of the 35th Conference on Our World in Concrete & Structures, Singapore, 315-322.
  42. Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concr. Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
  43. Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019a), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., 72(1), 845-859. http://doi.org/10.12989/sem.2019.72.1.083.
  44. Mazloom, M., Mehrvand, M., Pourhaji, P. and Savaripour, A. (2019b), "Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders", Struct. Monit. Maint., 6(1), 47-66. https://doi.org/10.12989/smm.2019.6.1.047.
  45. Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of micro-silica on mechanical properties of high-strength concrete", Cement Concr. Compos., 26(4), 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9.
  46. Mazloom, M. and Salehi, H. (2018), "The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete", IOP Conference Series Mater. Sci. Eng., 431(6). https://doi.org/10.1088/1757-899X/431/6/062007.
  47. Montgomery, C. (2017), Design and Analysis of Experiments, John Wiley & Sons.
  48. Nikbin, I.M., Davoodi, M.R., Fallahnejad, H. and Rahimi, S. (2016), "Influence of mineral powder content on the fracture behaviors and ductility of self-compacting concrete", J. Mater. Civ. Eng., 28(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001404.
  49. Pachideh, G. and Gholhaki, M. (2020), "Assessment of post-heat behavior of cement mortar incorporating micro-silica and granulated blast-furnace slag", J. Struct. Fire Eng., 11(2), 221-246. https://doi.org/10.1108/JSFE-11-2018-0038
  50. Pachideh, G., Gholhaki, M. and Ketabdari, H. (2020), "Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars", J. Build. Eng., 29, 101178. https://doi.org/10.1016/j.jobe.2020.101178
  51. Pandey, A. and Kumar, B. (2019a), "Evaluation of water absorption and chloride ion penetration of rice straw ash and micro silica admixed pavement quality concrete", Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02256.
  52. Pandey, A. and Kumar, B. (2019b), "Effects of rice straw ash and micro silica on mechanical properties of pavement quality concrete", J. Build. Eng., 26, 100889. https://doi.org/10.1016/j.jobe.2019.100889.
  53. Pandey, A. and Kumar, B. (2020), "Investigation on the effects of acidic environment and accelerated carbonation on concrete admixed with rice straw ash and micro silica", J. Build. Eng., 29, 101125. https://doi.org/10.1016/j.jobe.2019.101125.
  54. Prakasam, G., Murthy, A.R. and Saffiq Rehman, M. (2020), "Mechanical, durability and fracture properties of nano-modified FA/GGBS geopolymer mortar", Magaz. Concr. Res., 72(4), 207-216. https://doi.org/10.1680/jmacr.18.00059
  55. Rani, B.S. and Priyanka, N. (2017), "Self-Compacting Concrete using Polypropylene Fibers", Int. J. Res. Stud. Sci., Eng. Technol., 4(1), 16-19.
  56. Rashid Hameed, M. (2010), "Contribution of metallic fibers on the performance of reinforced concrete structures for the seismic application", Thesis for Ph.D., University of Toulouse, France.
  57. Revilla-Cuesta, V., Skaf, M., Chica, J.A., Fuente-Alonso, J.A. and Ortega-Lopez, V. (2020), "Thermal deformability of recycled self-compacting concrete under cyclical temperature variations", Mater. Lett., 278, 128417. https://doi.org/10.1016/j.matlet.2020.128417
  58. Salehi, H. and Mazloom, M. (2018), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concr. Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
  59. Salehi, H. and Mazloom, M. (2019a), "Opposite effects of ground granulated blast-furnace slag and micro-silica on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater, 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183.
  60. Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civ. Mech. Eng ., 19, 803-819. https://doi.org/10.1016/j.acme.2018.10.008.
  61. Shi, Z. (2009), Crack Analysis in Structural Concrete: Theory and Applications, Butterworth-Heinemann.
  62. Shin, S.W., Ghosh, S.K. and Moreno, J. (1989), "Flexural ductility of ultra-high-strength concrete members", Struct. J., 86(4), 394-400. https://doi.org/10.1016/j.conbuildmat.2019.08.029
  63. Skarendahl, A. and Petersson, O. (2000), Report 23: Self-Compacting Concrete-State-of-the-Art Report of Rilem Technical Committee 174-SCC, RILEM publications.
  64. Soares, C., Mohamed, A., Venturini, W.S. and Lemaire, M. (2002), "Reliability analysis of nonlinear reinforced concrete frames using the response surface method", Reliabil. Eng. Syst. Safe., 75(1), 1-16. https://doi.org/10.1016/S0951-8320(01)00043-6
  65. Topcu, I.B. and Uygunoglu, T. (2010), "Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC)", Constr. Build. Mater., 24(7), 1286-1295. https://doi.org/10.1016/j.conbuildmat.2009.12.007