Acknowledgement
This work was supported by Shahid Rajaee Teacher Training University under grant number 4951.
References
- Abna, A. and Mazloom, M. (2022a), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.13200.
- Abna, A. and Mazloom, M. (2022b), "The effects of micro-silica and nano-silica on the workability and mechanical properties of self-compacting concrete containing polypropylene fibers", Amirkabir J. Civil Eng., 54(3), 1101-1118. https://doi.org/10.22060/CEEJ.2021.19252.7115.
- ACI 237 (2007), Self-Consolidating Concrete, American Concrete Institute.
- ACI Committee 544 Report (1994), Design Consideration for SFRC, ACI structural journal, 563-530.
- Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T (2016), "High-performance fiber-reinforced concrete: A review", J. Mater. Sci., 51(14), 6517-6551. https://doi.org/10.1007/s10853-016-9917-4.
- Afzali-Naniz, O. and Mazloom, M. (2018), "Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete", J. Build. Eng., 20, 400-410. https://doi.org/10.1016/j.jobe.2018.08.014.
- Afzali-Naniz, O. and Mazloom, M. (2019a), "Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asian J. Civil Eng., 20, 57-70. https://doi.org/10.1007/s42107-018-0088-2.
- Afzali-Naniz, O. and Mazloom, M. (2019b), "Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi: 10.1177/1369433219837426.
- Al-Hadithi, A.I., Noaman, A.T. and Mosleh, W.K. (2019), "Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC)", Compos. Struct., 224, 111021. https://doi.org/10.1016/j.conbuildmat.2019.08.029
- Altalabani, D., Bzeni, K. and Linsel, S. (2020), "Mechanical properties and load-deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete", Const. Build. Mater., 252, 119084 https://doi.org/10.1016/j.conbuildmat.2020.119084
- ASTM C1609/M-05 (2006), Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (using Beam with Third-point loading), ASTM International, West Conshohocken Pennsylvania.
- ASTM C1621 (2006), Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. ASTM International.
- ASTM C496/C496M (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International.
- ASTM C469/C469M (2010), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International.
- ASTM C33 (2013), Standard specification for concrete aggregates. Philadelphia, ASTM International.
- Bolander, E., Choi, S. and Duddukuri, S.R. (2008), "Fracture of fiber-reinforced cement composites: effects of fiber dispersion", Int. J. Fract., 154, 73-86. https://doi.org/10.1007/s10704-008-9269-4.
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
- Broujerdian, V., Karimpour, H. and Alavikia, S. (2019), "Predicting the shear behavior of reinforced concrete beams using nonlinear fracture mechanics", Int. J. Civil Eng., 17(5), 597-605. https://doi.org/10.1007/s40999-018-0336-6.
- BS 1881: Part 116 (1983), Method for Determination of Compressive Strength of Concrete Cubes, British Standards.
- BS 1881: Part 117 (1983), Method for Determination of Tensile Splitting Strength, British Standards.
- C elik, Z. and Bingol, A.F. (2020), "Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC)", Mater. Struct., 53(3), 1-16. https://doi.org/10.1617/s11527-020-01487-8
- Cho, T. (2007), "Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method", Constr. Build. Mater., 21(12), 2031-2040. https://doi.org/10.1016/j.conbuildmat.2007.04.018
- Cihan, M.T., Guner, A. and Yuzer, N. (2013), "Response surfaces for compressive strength of concrete", Constr. Build. Mater., 40, 763-774. https://doi.org/10.1016/j.conbuildmat.2012.11.048
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concr. Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
- EFNARC, (2002), Specifications and Guidelines for Self-Compacting Concrete, ISBN 0953973344.
- Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919
- Horszczaruk, E., Mijowska, E., Cendrowski, K. and Sikora, P. (2014), "Influence of the new method of nano-silica addition on the mechanical properties of cement mortars", Cement, Wapno, Beton, 5, 308-316.
- Horszczaruk, E., Mijowska, E., Cendrowski, K., Mijowska, S. and Sikora, P. (2013), "The influence of nano-silica with different morphology on the mechanical properties of cement mortars", Cement, Wapno, Beton, 18/80(1), 24-32.
- Jena, B. and Mohanty, B.B. (2015), "Study on the mechanical properties and fracture behavior of chopped steel fiber reinforced self compacting concrete", Int. Res. J. Eng. Technol., 4(12), 166-170.
- Jena, B. and Patel, A. (2016), "Study on the mechanical properties and microstructure of chopped carbon fiber reinforced self compacting concrete", Technology, 7(3), 223-232.
- Kamal, M.M., Safan, M.A., Etman, Z.A. and Kasem, B.M. (2014), "Mechanical properties of self-compacted fiber concrete mixes", HBRC J., 10(1), 25-34. https://doi.org/10.1016/j.hbrcj.2013.05.012
- Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch-to-depth ratios", Comput. Concr, 22(1), 39-51. http://doi.org/10.12989/cac.2018.22.1.039.
- Karimpour, H. and Mazloom, M. (2022a)," Determining a novel softening function for modeling the fracture of concrete", Adv. Mater. Res., 11(4), 351. https://doi.org/10.12989/amr.2022.11.4.351
- Karimpour, H. and Mazloom, M. (2022b), "Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers", Struct. Eng. Mech., 81(5), 575-589. https://doi.org/10.12989/sem.2022.81.5.575.
- Li, J., Wan, C., Zhang, X. and Niu, J. (2020), "Fracture property of polypropylene fiber-reinforced lightweight concrete at high temperatures", Magazine Concr. Res., 72(22), 1147-1154. https://doi.org/10.1680/jmacr.17.00432
- Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt, and polypropylene fibers", Adv. Mater. Res., 8(2), 137-154. http://doi.org/10.12989/amr.2019.8.2.137.
- Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fiber-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concr. Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
- Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des, 6(3), 225-239. http://dx.doi.org/10.12989/acd.2021.6.3.225.
- Mazloom, M., Pourhaji, P. and Afzali-Naniz, O. (2021), "Effects of halloysite nanotube, nano-silica and micro-silica on rheology, hardened properties and fracture energy of SCLC", Struct. Eng. Mech., 80(1), 91-101. https://doi.org/10.12989/SEM.2021.80.1.091.
- Mazloom, M. and Ranjbar, A. (2010), "Relation between the workability and strength of self-compacting concrete", Proceedings of the 35th Conference on Our World in Concrete & Structures, Singapore, 315-322.
- Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concr. Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
- Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019a), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., 72(1), 845-859. http://doi.org/10.12989/sem.2019.72.1.083.
- Mazloom, M., Mehrvand, M., Pourhaji, P. and Savaripour, A. (2019b), "Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders", Struct. Monit. Maint., 6(1), 47-66. https://doi.org/10.12989/smm.2019.6.1.047.
- Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of micro-silica on mechanical properties of high-strength concrete", Cement Concr. Compos., 26(4), 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9.
- Mazloom, M. and Salehi, H. (2018), "The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete", IOP Conference Series Mater. Sci. Eng., 431(6). https://doi.org/10.1088/1757-899X/431/6/062007.
- Montgomery, C. (2017), Design and Analysis of Experiments, John Wiley & Sons.
- Nikbin, I.M., Davoodi, M.R., Fallahnejad, H. and Rahimi, S. (2016), "Influence of mineral powder content on the fracture behaviors and ductility of self-compacting concrete", J. Mater. Civ. Eng., 28(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001404.
- Pachideh, G. and Gholhaki, M. (2020), "Assessment of post-heat behavior of cement mortar incorporating micro-silica and granulated blast-furnace slag", J. Struct. Fire Eng., 11(2), 221-246. https://doi.org/10.1108/JSFE-11-2018-0038
- Pachideh, G., Gholhaki, M. and Ketabdari, H. (2020), "Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars", J. Build. Eng., 29, 101178. https://doi.org/10.1016/j.jobe.2020.101178
- Pandey, A. and Kumar, B. (2019a), "Evaluation of water absorption and chloride ion penetration of rice straw ash and micro silica admixed pavement quality concrete", Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02256.
- Pandey, A. and Kumar, B. (2019b), "Effects of rice straw ash and micro silica on mechanical properties of pavement quality concrete", J. Build. Eng., 26, 100889. https://doi.org/10.1016/j.jobe.2019.100889.
- Pandey, A. and Kumar, B. (2020), "Investigation on the effects of acidic environment and accelerated carbonation on concrete admixed with rice straw ash and micro silica", J. Build. Eng., 29, 101125. https://doi.org/10.1016/j.jobe.2019.101125.
- Prakasam, G., Murthy, A.R. and Saffiq Rehman, M. (2020), "Mechanical, durability and fracture properties of nano-modified FA/GGBS geopolymer mortar", Magaz. Concr. Res., 72(4), 207-216. https://doi.org/10.1680/jmacr.18.00059
- Rani, B.S. and Priyanka, N. (2017), "Self-Compacting Concrete using Polypropylene Fibers", Int. J. Res. Stud. Sci., Eng. Technol., 4(1), 16-19.
- Rashid Hameed, M. (2010), "Contribution of metallic fibers on the performance of reinforced concrete structures for the seismic application", Thesis for Ph.D., University of Toulouse, France.
- Revilla-Cuesta, V., Skaf, M., Chica, J.A., Fuente-Alonso, J.A. and Ortega-Lopez, V. (2020), "Thermal deformability of recycled self-compacting concrete under cyclical temperature variations", Mater. Lett., 278, 128417. https://doi.org/10.1016/j.matlet.2020.128417
- Salehi, H. and Mazloom, M. (2018), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concr. Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
- Salehi, H. and Mazloom, M. (2019a), "Opposite effects of ground granulated blast-furnace slag and micro-silica on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater, 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183.
- Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civ. Mech. Eng ., 19, 803-819. https://doi.org/10.1016/j.acme.2018.10.008.
- Shi, Z. (2009), Crack Analysis in Structural Concrete: Theory and Applications, Butterworth-Heinemann.
- Shin, S.W., Ghosh, S.K. and Moreno, J. (1989), "Flexural ductility of ultra-high-strength concrete members", Struct. J., 86(4), 394-400. https://doi.org/10.1016/j.conbuildmat.2019.08.029
- Skarendahl, A. and Petersson, O. (2000), Report 23: Self-Compacting Concrete-State-of-the-Art Report of Rilem Technical Committee 174-SCC, RILEM publications.
- Soares, C., Mohamed, A., Venturini, W.S. and Lemaire, M. (2002), "Reliability analysis of nonlinear reinforced concrete frames using the response surface method", Reliabil. Eng. Syst. Safe., 75(1), 1-16. https://doi.org/10.1016/S0951-8320(01)00043-6
- Topcu, I.B. and Uygunoglu, T. (2010), "Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC)", Constr. Build. Mater., 24(7), 1286-1295. https://doi.org/10.1016/j.conbuildmat.2009.12.007