DOI QR코드

DOI QR Code

물리적 녹조 제거 장치의 제거 효율 평가 방안

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices

  • 투고 : 2023.08.30
  • 심사 : 2023.10.24
  • 발행 : 2023.12.31

초록

국내 상수원에서 주기적으로 발생하는 녹조에 대응하기 위하여 다양한 종류의 녹조제거기술이 개발되어 적용 중이다. 이러한 기술들은 녹조제거 원리가 다르기 때문에 이들의 제거 효율을 비교·평가하기는 어렵다. 본 연구에서는 대청호 서화천 수역에서 이동식 녹조제거장치를 사용하여 제거 작업을 시행한 결과를 활용하여, 녹조제거 효율을 평가할 수 있는 표준화된 방법을 제안하였다. 녹조 제거 작업시 수거된 슬러지의 양, 함수율, 클로로필-a의 농도로부터 작업 구간 중 클로로필-a의 농도 감소량(ΔChl-a)을 계산하였다. 또한 작업 대상 수역의 면적, 일일 최대 작업 면적과 ΔChl-a로부터 대상 수역에서 1 mg/m3의 클로로필-a 농도를 저감하는데 필요한 작업일수(WD)를 계산하였다. 작업 전후 수체에서 클로로필-a의 농도 저감율, 제거 기술의 처리 용량, 작업 대상 수역의 수체 용량으로부터 녹조제거능을 계산하는 방법을 제안하였다. 본 연구에서 사용된 이동식 녹조제거장치의 녹조제거능은 6.64%/day (대청호 서화천 수역 대상, 약 500,000 m2)이었으며, 이는 다른 물리·화학적 녹조제거 기술의 녹조제거능(0.02~4.72%/day)에 비해 높은 것으로 나타났다. 본 연구에서 제시한 조류제거효율 평가 방법을 활용하여 국내에서 적용되고 있는 녹조제거 기술의 비교 평가가 가능할 것이며, 국립환경과학원이 운영하고 있는 「조류제거시설 설치·운영 및 살포용 조류제거물질 사용지침」에서 물리적 또는 물리·화학적 복합 조류제거기법의 조류제거 성능 및 제거 효율 평가를 판정하는 방법으로 활용이 가능할 것으로 판단된다.

In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.

키워드

과제정보

이 논문은 충북대학교 국립대학육성사업(2022) 지원을 받아 작성되었으며, 이에 감사드립니다.

참고문헌

  1. Ahn C-Y, Lee CS, Choi JW, Lee S, and Oh H-M. 2015. Global occurrence of harmful cyanobacterial blooms and N, P-limitation strategy for bloom control. Korean J Environ Biol. 33: 1-6. [Korean Literature] https://doi.org/10.11626/KJEB.2015.33.1.001
  2. Byeon KD, Kim GY, Lee I, Lee S, Park J, Hwang T, and Joo JC. 2016. Investigation and evaluation of algae removal technologies applied in domestic rivers and lakes. J Korean Soc Environ Eng. 38: 387-394. [Korean Literature] https://doi.org/10.4491/KSEE.2016.38.7.387
  3. Camargo JA, Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int. 32: 831-849. https://doi.org/10.1016/j.envint.2006.05.002
  4. Carmichael WW, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae. 54: 194-212. https://doi.org/10.1016/j.hal.2016.02.002
  5. Cheong C-J. 2008. Removal of microalgae using inorganic coagulants in coagulation and sedimentation processes for water treatment. J. Korean Soc Environ Eng. 30: 85-89. [Korean Literature]
  6. Chernova E, Sidelev S, Russkikh I, Korneva L, Solovyova V, Mineeva N, Stepanova I, Zhakovskaya Z. 2020. Spatial distribution of cyanotoxins and ratios of microcystin to biomass indicators in the reservoirs of the Volga, Kama and Don Rivers, the European part of Russia. Limnologica. 84: 125819.
  7. Falconer I, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M, Codd G. 1999. Safe levels and safe practices, pp. 155-178. In I Chorus and J Bartram (eds.), Toxic Cyanobacteria in Water-A Guide to their Public Health Consequences, Monitoring and Management, E&FN Spon, London, UK.
  8. Fastner J, Humpage A. 2021. Hepatotoxic cyclic peptides-microcystins and nodularins, pp. 21-52. In I Chorus and M Welker (eds.), Toxic Cyanobacteria in Water-A Guide to their Public Health Consequences, Monitoring and Management, 2nd ed., CRC Press, Boca Raton, FL, USA.
  9. Funari E, Testai E. 2008. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38: 97-125. https://doi.org/10.1080/10408440701749454
  10. Haddix PL, Hughley CJ, Lechevallier MW. 2007. Occurrence of microcystins in 33 US water supplies. Journal-American Water Works Association 99: 118-125. https://doi.org/10.1002/j.1551-8833.2007.tb08033.x
  11. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JM, Visser PM. 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16: 471-483. https://doi.org/10.1038/s41579-018-0040-1
  12. Ji X, Verspagen JM, Stomp M, Huisman J. 2017. Competition between cyanobacteria and green algae at low versus elevated CO2: Who will win, and why? J Exp Bot. 68: 3815-3828. https://doi.org/10.1093/jxb/erx027
  13. Joo JC, Park JR, Ahn CH, Kim GY, Lee MJ. 2018. Decision-making protocol to select the optimal algae removal technologies for water bodies with different characteristics. The Magazine of the Korean Society of Civil Engineers 66: 26-31. [Korean Literature]
  14. Kal B-S, Mun H-S, Hong S-H, Park C-D, Min K-O, Park J-B. 2020. A study on the applicability of load duration curve for the management of nonpoint source pollution in Seohwacheon basin. Journal of the Korean Association of Geographic Information Studies 23: 174-191. [Korean Literature]
  15. KEC. 2012. Algae Reduction Technology to Improve Safety of Aquatic Ecosystem, pp. 135-208. Korea Environment Corporation, Incheon, Republic of Korea. [Korean Literature]
  16. Kim D-S, Lee H-K, Maeng S-J, Hwang S-J, Shin J-K. 2003. An evaluation of aquatic environment in the Okchon stream-embayment watershed, Korea. Korean Journal of Ecology and Environment. 36: 181-190. [Korean Literature]
  17. Kim H-B, Park H-K, Shin K, Moon J-S. 2010. The characteristics of toxin production in the Korean toxic cyanobacteria. J Korean Soc Water Environ. 26: 834-840. [Korean Literature]
  18. Kim S, Chung S, Park H, Cho Y, Lee H. 2019. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water 11: 1163.
  19. Kim S-K, Kim D-K, Kang S, Ahn J, Kim I-H, Yun S, Lee S, Lee W. 2013. Removal of algae by natural coagulants of soil origin. J Korean Soc Environ Eng. 35: 883-888. [Korean Literature] https://doi.org/10.4491/KSEE.2013.35.12.883
  20. Lee CS, Ahn C-Y, La HJ, Lee S, Oh H-M. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean J Environ Biol. 31: 233-242. [Korean Literature] https://doi.org/10.11626/KJEB.2013.31.4.233
  21. MOE. 2016. Standard Methods for Analysis of Water Pollution. Ministry of Environment, Republic of Korea, Sejong, Republic of Korea. [Korean Literature]
  22. Nazari-Sharabian M, Ahmad S, and Karakouzian M. 2018. Climate change and eutrophication: A short review. Engineering, Technology and Applied Science Research 8: 3668-3672. https://doi.org/10.48084/etasr.2392
  23. Noh S, Park H, Choi H, Lee J. 2014. Effect of climate change for cyanobacteria growth pattern in Chudong station of Lake Daechung. J Korean Soc Water Environ. 30: 377-385. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30.4.377
  24. Oh K-H, Cho Y-C. 2015. Evaluation of contamination level of the sediments from Chusori and Chudong areas in Daechung Reservoir. J Korean Soc Environ Eng. 37: 277-284. [Korean Literature] https://doi.org/10.4491/KSEE.2015.37.5.277
  25. Oh K-H, Han AW, Cho Y-C. 2010. Analysis of sequence diversity of mcyA gene involved in microcystin synthesis in Korean reservoirs. Korean J Microbiol. 46: 162-168. [Korean Literature]
  26. Oh K-H, Jeong D-H, Yang S-Y, Jeon T-W, Cho Y-C. 2013. Effects of submerged aerator on the growth of algae in Daechung Reservoir. J Korean Soc Environ Eng. 35: 268-275. [Korean Literature] https://doi.org/10.4491/KSEE.2013.35.4.268
  27. Oh Y-T, Park J-C, Kim D-S, Rhyu JK. 2004. Pollutant characteristics of nonpoint source runoff in Okcheon stream. J Korean Soc Water Environ. 20: 657-663. [Korean Literature]
  28. Paerl HW, Tucker CS. 1995. Ecology of blue-green algae in aquaculture ponds. J World Aquac Soc. 26: 109-131. https://doi.org/10.1111/j.1749-7345.1995.tb00235.x
  29. Park C, Yoon D, Park SH, Park N-S. 2019. An experimental study for removing algae particles using a metal mesh membrane. Desalin Water Treat. 149: 52-57. https://doi.org/10.5004/dwt.2019.23908
  30. Park H-K, Lee H-J, Kim E-K, Jung D-I. 2005. Characteristics of algal abundance and statistical analysis of environmental factors in Lake Paldang. J Korean Soc Water Environ. 21: 584-594. [Korean Literature]
  31. Reynolds CS, Walsby AE. 1975. Water-blooms. Biol Rev. 50: 437-481. https://doi.org/10.1111/j.1469-185X.1975.tb01060.x
  32. Shi L, Du X, Liu H, Chen X, Ma Y, Wang R, Tian Z, Zhang S, Guo H, Zhang H. 2021. Update on the adverse effects of microcystins on the liver. Environ Res. 195: 110890.
  33. Shin J-K, Kang B-G, Hwang S-J. 2016. Water-blooms (green-tide) dynamics of algae alert system and rainfall-hydrological effects in Daecheong Reservoir, Korea. Korean Journal of Ecology and Environment 49: 153-175. [Korean Literature] https://doi.org/10.11614/KSL.2016.49.3.153
  34. Shin J-K, Kim H, Kim SW, Chong S-A, Moon BC, Lee S, Choi JW. 2014. A practical new technology of removing algal bloom: K-water gate water combine. Korean Journal of Ecology and Environment 47: 214-218. [Korean Literature] https://doi.org/10.11614/KSL.2014.47.3.214
  35. Walls JT, Wyatt KH, Doll JC, Rubenstein EM, Rober AR. 2018. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Sci Total Environ. 610: 786-795. https://doi.org/10.1016/j.scitotenv.2017.08.149
  36. Wert EC, Korak JA, Trenholm RA, Rosario-Ortiz FL. 2014. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species. Water Res. 52: 251-259. https://doi.org/10.1016/j.watres.2013.11.001
  37. Yang J, Tang H, Zhang X, Zhu X, Huang Y, Yang Z. 2018. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Environ Sci Pollut Res. 25: 4794-4802. https://doi.org/10.1007/s11356-017-0887-0