DOI QR코드

DOI QR Code

Development of fertilizer-distributed algorithms based on crop growth models

작물생육모형 기반 비료시비량 분배 알고리즘 개발

  • Doyun Kim (Department of Information Statistics, Chungbuk National University) ;
  • Yejin Lee (Division of Soil & Fertilizer, Department of Agricultural Environment, National Institute of Agricultural Sciences) ;
  • Tae-Young Heo (Department of Information Statistics, Chungbuk National University)
  • 김도윤 (충북대학교 정보통계학과) ;
  • 이예진 (농촌진흥청 국립농업과학원 농업환경부 토양비료과) ;
  • 허태영 (충북대학교 정보통계학과)
  • Received : 2023.08.28
  • Accepted : 2023.10.05
  • Published : 2023.12.31

Abstract

Fertilizers are crucial for increasing crop yield, but using too much of them without taking into account the nutrients that the crops need can increase costs for farm management and have a negative impact on the environment. Through smart agriculture, fertilizers can be applied as needed at the right time to reflect the growth characteristics of crops, reducing the burden of fertilizer losses and providing economical nutrient management. In this study, we use the total dry weight of field-cultivated red pepper and green onion grown in various growing environments to fit a nonlinear model-based crop growth model using different growth curves (logistic, Gompertz, Richards, and double logistic curve), and we propose a fertilizer distributed algorithm based on crop growth rate.

비료는 작물 생산성을 높이는데 중요한 역할을 하지만 작물의 양분요구량을 고려하지 않은 비료 과다 사용은 농가 경영비 부담과 환경 부하를 높힐 우려가 있다. 스마트 농업을 통해 작물의 생장 특성을 반영하여 시기별로 필요한 만큼 비료를 공급하면 비료 유실에 대한 부담을 줄이고, 경제적인 양분관리 효과를 기대할 수 있다. 본 논문에서는 다양한 재배환경에서 재배한 고추 및 대파의 정식일수별 전체 건중량을 기반으로 다양한 생장곡선(로지스틱(logistic), 곰페르츠(Gompertz), 리차드(Richards), 이중 로지스틱(double logistic curve)을 활용한 비선형 모형 기반 작물 생육 모형을 적합하고, 작물 성장률에 기반한 비료시비량 분배 알고리즘을 제안하고자 한다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업 (과제번호:PJ0156352021)의 지원에 의해 이루어진 것임.

References

  1. Baione F, Biancalana D, and De Angelis P (2021). An application of sigmoid and double-sigmoid functions for dynamic policyholder behaviour, Decisions in Economics and Finance, 44, 5-22. https://doi.org/10.1007/s10203-020-00279-7
  2. Cho S, Son YS, and Seong B (2019). Time Series Analysis, Yulgokbook publishing Co., Seoul.
  3. Fernandes TJ, Pereira AA, and Muniz JA (2017). Double sigmoidal models describing the growth of coffee berries, Ciencia Rural, 47, e20160646.
  4. Karadavut U, Palta C, Kokten K, and Bakoglu A (2010). Comparative study on some non-linear growth models for describing leaf growth of maize, International Journal of Agriculture & Biology, 12, 227-230.
  5. Kathleen MCT and Even T (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family, PLoS ONE, 12, e0178691.
  6. Kim S, Kim J, and Park J (2020). Development and comparison of growth regression model of dry weight and leaf area according to growing days and accumulative temperature of Chrysanthemum "Baekma", Protected Horticulture and Plant Factory, 29, 414-420. https://doi.org/10.12791/KSBEC.2020.29.4.414
  7. Lee JH, Lee HJ*, Kim SK, Lee SG, Lee HS, and Choi CS (2017). Development of growth models as affected by cultivation season and transplanting date and estimation of prediction yield in Kimchi cabbage, Protected Horticulture and Plant Factory, 26, 235-241. https://doi.org/10.12791/KSBEC.2017.26.4.235
  8. Lee SH, Park YS, and Kwon OS (2020). Constructing a tomato smart farm optimization model with estimated growth functions, Journal of the Korean Data And Information Science Society, 31, 619-635. https://doi.org/10.7465/jkdi.2020.31.4.619
  9. Lee JH, Choi BR, Cho GG et al. (2020). Effect of controlled-release coated fertilizer on yield and nitrogen use efficiency in a red pepper cultivated field, Korean Journal of Soil Science and Fertilizer, 53, 519-527. https://doi.org/10.7745/KJSSF.2020.53.4.519
  10. Lee Y, Lee C, Park H et al. (2022). Fertilizer Recommendation for Crops, National Institute of Agricultiral Sciences, Jeollabuk-do.
  11. Meyer P (1994). Bi-logistic growth, Technological Forecasting and Social Change, 47, 89-102. https://doi.org/10.1016/0040-1625(94)90042-6
  12. Meade KA, Cooper M, and Beavis WD (2013). Modeling biomass accumulation in maize kernels, Field Crops Research, 151, 92-100. https://doi.org/10.1016/j.fcr.2013.07.014