DOI QR코드

DOI QR Code

Numerical Modelling of Radionuclide Migration for the Underground Silo at Near-Field

  • Received : 2023.09.25
  • Accepted : 2023.11.13
  • Published : 2023.12.30

Abstract

To ensure the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. This paper addresses the development of the safety assessment model for the underground silo of Wolseong Low-and Immediate-Level Waste (LILW) disposal facility in Korea. As the simulated result, the nuclides diffused from the waste were kept inside the silo without the leakage of those while the integrity of the concrete is maintained. After the degradation of concrete, radionuclides migrate in the same direction as the groundwater flow by mainly advection mechanism. The release of radionuclides has a positive linear relationship with a half-life in the range of medium half-life. Additionally, the solidified waste form delays and reduces the migration of radionuclides through the interaction between the nuclides and the solidified medium. Herein, the phenomenon of this delay was implemented with the mass transfer coefficient of the flux node at numerical modeling. The solidification effects, which are delaying and reducing the leakage of nuclides, were maintained the integrity of the nuclides. This effect was decreased by increasing the half-life and the mass transfer coefficient of radionuclides.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. RS-2023-00235182).

References

  1. T.E. Payne, J.J. Harrison, D.I. Cendon, M.J. Comarmond, S. Hankin, C.E. Hughes, M.P. Johansen, A. Kinsela, L.M. Shahin, A. Silitonga, S. Thiruvoth, and K.L. Wilsher, "Radionuclide Distributions and Migration Pathways at a Legacy Trench Disposal Site", J. Environ. Radioact., 211, 106081 (2020).
  2. R.N. Nair and T.M. Krishnamoorthy, "Probabilistic Safety Assessment Model for Near Surface Radioactive Waste Disposal Facilities", Environ. Model. Softw., 14(5), 447-460 (1999). https://doi.org/10.1016/S1364-8152(98)00090-5
  3. T.M. Krishnamoorthy and R.N. Nair, "Groundwater Models for Safety Analysis of Low Level Radioactive Waste Repositories", Nucl. Geophys., 8(4), 351-360 (1994).
  4. G. de Marsily, J. Goncalves, S. Violette, and M.C. Castro, "Migration Mechanisms of Radionuclides From a Clay Repository Toward Adjacent Aquifers and the Surface", C. R. Phys., 3(7-8), 945-959 (2002). https://doi.org/10.1016/S1631-0705(02)01385-3
  5. M. Marseguerra, E. Zio, E. Patelli, F. Giacobbo, P. Risoluti, G. Ventura, and G. Mingrone, "Modeling the Effects of the Engineered Barriers of a Radioactive Waste Repository by Monte Carlo Simulation", Ann. Nucl. Energy, 30(4), 473-496 (2003). https://doi.org/10.1016/S0306-4549(02)00072-5
  6. C.E. Majorana and V.A. Salomoni, "Parametric Analyses of Diffusion of Activated Sources in Disposal Forms", J. Hazard. Mater., 113(1-3), 45-56 (2004). https://doi.org/10.1016/j.jhazmat.2004.06.008
  7. T.E. Payne, V. Brendler, M. Ochs, B. Baeyens, P.L. Brown, J.A. Davis, C. Ekberg, D.A. Kulik, J. Lutzenkirchen, T. Missana, Y. Tachi, L.R. Van Loon, and S. Altmann, "Guidelines for Thermodynamic Sorption Modelling in the Context of Radioactive Waste Disposal", Environ. Model. Softw., 42, 143-156 (2013). https://doi.org/10.1016/j.envsoft.2013.01.002
  8. S. Yeboah, T.T. Akiti, and J.J. Fletcher, "Numerical Modeling of Radionuclide Migration Through a Borehole Disposal Site", SpringerPlus, 3(1), 155 (2014).
  9. V. Filistovic and T. Nedveckaite, "Reference Biosphere Approach to Safety Assessment of Near-surface Radioactive Waste Disposal Facilities", Environ. Chem. Phys. (Vilnius), 25(4), 181-190 (2003).
  10. A. Nardi, A. Idiart, P. Trinchero, L.M. de Vries, and J. Molinero, "Interface COMSOL-PHREEQC (iCP), an Efficient Numerical Framework for the Solution of Coupled Multiphysics and Geochemistry", Comput. Geosci., 69, 10-21 (2014). https://doi.org/10.1016/j.cageo.2014.04.011
  11. Q. Li, K. Ito, Z. Wu, C.S. Lowry, and S.P. Loheide II, "COMSOL Multiphysics: A Novel Approach to Ground Water Modeling", Groundwater, 47(4), 480-487 (2009). https://doi.org/10.1111/j.1745-6584.2009.00584.x
  12. Nuclear Safety and Security Commission, Regulations on the Delivery of Low and Intermediate Level Radioactive Wastes, NSSC Notice No.2013-29, Republic of Korea (2013).
  13. U.S. Nuclear Regulatory Commission. October 30 2017. "Waste Form Technical Position, Revision 1.", U.S. NRC homepage. Accessed Aug. 10 2023. Available from: https://www.nrc.gov/about-nrc/radiation/protects-you/hppos/hppos290.html.
  14. American National Standard, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, ANSI/ANS-16.1-2003 (R2017) (2017).
  15. C.W. Fetter, T. Boving, and D. Kreamer, Contaminant Hydrogeology: Third Edition, Waveland Press, Inc., Illinois (2017).
  16. S.A. Walling, M.N. Kauffmann, L.J. Gardner, D.J. Bailey, M.C. Stennett, C.L. Corkhill, and N.C. Hyatt, "Characterization and Disposability Assessment of Multi-Waste Stream In-container Vitrified Products for Higher Activity Radioactive Waste", J. Hazard. Mater., 401, 123764 (2021).
  17. D. Grigaliuniene, R. Poskas, R. Kilda, H. Jouhara, and P. Poskas, "Modeling Radionuclide Migration From Activated Metallic Waste Disposal in a Generic Geological Repository in Lithuania", Nucl. Eng. Des., 370, 110885 (2020).
  18. Y. Jo, S.C. Han, S.I. Ok, S. Choi, and J.I. Yun, "Radiotoxicity Flux and Concentration as Complementary Safety Indicators for the Safety Assessment of a Rock-Cavern Type LILW Repository", Nucl. Eng. Technol., 50(8), 1324-1329 (2018). https://doi.org/10.1016/j.net.2018.07.014
  19. D. Mallants, J. Marivoet, and X. Sillen, "Performance Assessment of the Disposal of Vitrified High-Level Waste in a Clay Layer", J. Nucl. Mater., 298(1-2), 125-135 (2001). https://doi.org/10.1016/S0022-3115(01)00577-3
  20. D. Jacques, J. Perko, S.C. Seetharam, and D. Mallants, "A Cement Degradation Model for Evaluating the Evolution of Retardation Factors in Radionuclide Leaching Models", Appl. Geochemistry, 49, 143-158 (2014). https://doi.org/10.1016/j.apgeochem.2014.06.008