Acknowledgement
This work was supported by National Institute for Mathematical Sciences(NIMS) grant funded by the Korean government(MSIT) (No.NIMS-B23810000).
References
- Li, Fei-Fei, et al., Spatial Localization and Detection., CS231n, Stanford, 2016. Retrieved from http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf.
- Viola, Paul, and Michael Jones, Rapid object detection using a boosted cascade of simple features, IEEE, Proceedings of the CVPR 2001, HI, USA 2001.
- Viola, Paul, and Michael J. Jones, Robust real-time face detection, International journal of computer, 57 (2004), 137-154.
- Felzenszwalb, Pedro, David McAllester, and Deva Ramanan, A discriminatively trained, multiscale, deformable part model, IEEE, Proceedings of the CVPR 2008, AK, USA 2008.
- Zou, Zhengxia, et al, Object detection in 20 years: A survey, Proceedings of the IEEE, 111 (2023), 257-276.
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems 25, NIPS, Proceedings of NIPS 2012, NV, USA 2012.
- Girshick, Ross, et al, Rich feature hierarchies for accurate object detection and semantic segmentation, IEEE, Proceedings of the CVPR 2014, OH, USA 2014.
- He, Kaiming, et al, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE transactions on pattern analysis and machine intelligence, 37 (2015), 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- Girshick, Ross, Fast r-cnn, IEEE, Proceedings of the IEEE international conference on computer vision, Santiago, Chile 2015.
- Ren, Shaoqing, et al, Faster r-cnn: Towards real-time object detection with region proposal networks, Advances in neural information processing systems 28, NIPS, Proceedings of NIPS 2015, Montreal, Canada 2015.
- Lin, Tsung-Yi, et al, Feature pyramid networks for object detection, IEEE, Proceedings of the CVPR 2017, HI, USA 2017.
- Redmon, Joseph, et al, You only look once: Unified, real-time object detection, IEEE, Proceedings of the CVPR 2016, NV, USA 2016.
- Liu, Wei, et al, Ssd: Single shot multibox detector, Computer Vision-ECCV 2016, Springer, Proceedings of the14th European Conference, Amsterdam, The Netherlands, 2016.
- Lin, Tsung-Yi, et al, Focal loss for dense object detection, IEEE transactions on pattern analysis and machine intelligence, 42 (2018), 318 - 327. https://doi.org/10.1109/TPAMI.2018.2858826
- Law, Hei, and Jia Deng, Cornernet: Detecting objects as paired keypoints, Proceedings of the European conference on computer vision (ECCV), Munich, Germany 2018.
- Zhao, Zhong-Qiu, et al, Object detection with deep learning: A review, IEEE transactions on neural networks and learning systems, 30 (2019), 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
- Carion, Nicolas, et al, End-to-end object detection with transformers, Cham: Springer International Publishing, Proceedings of the European conference on computer vision (ECCV), online, 2020.
- Padilla, Rafael, Sergio L. Netto, and Eduardo AB Da Silva, A survey on performance metrics for objectdetection algorithms, IEEE, Proceedings of 2020 international conference on systems, signals and image processing (IWSSIP), Niteroi, Brazil, 2020.
- Jocher, Glenn, et al. Ultralytics/yolov5: V5.0 - Yolov5-p6 1280 Models, AWS, Supervise.ly and Youtube Integrations. v5.0, Zenodo, 2021, doi:10.5281/zenodo.4679653.