References
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44 (1985), 283-301. https://doi.org/10.1090/S0025-5718-1985-0777265-X
- R. G. Duran and R. Rodr iguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math., 62 (1992), 297-303. https://doi.org/10.1007/BF01396231
- K.-Y. Kim and J.-S. Park, Asymptotic exactness of some Bank-Weiser error estimator for quadratic triangular finite element, Bull. Korean Math. Soc., 57 (2020), 393-406.
- A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math., 106 (2007), 225-253. https://doi.org/10.1007/s00211-007-0064-3
- R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part I: grids with superconvergence, SIAM J. Numer. Anal., 41 (2003), 2294-2312. https://doi.org/10.1137/S003614290139874X
- N. Levine, Superconvergent recovery of the gradient from piecewise linear finite-element approximations, IMA J. Numer. Anal., 5 (1985), 407-427. https://doi.org/10.1093/imanum/5.4.407
- A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800. https://doi.org/10.1137/S0036142903413002
- J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152.
- O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg., 101 (1992), 207-224. https://doi.org/10.1016/0045-7825(92)90023-D
- W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math., 5 (1947), 241-269. https://doi.org/10.1090/qam/25902
- M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math., 234 (2010), 2618-2632. https://doi.org/10.1016/j.cam.2010.01.037
- D. Braess, V. Pillwein and J. Schoberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1189-1197. https://doi.org/10.1016/j.cma.2008.12.010
- D. Braess and J. Schoberl, Equilibrated residual error estimator for edge elements, Math. Comp., 77 (2008), 651-672. https://doi.org/10.1090/S0025-5718-07-02080-7
- Z. Cai and S. Zhang, Robust equilibrated residual error estimator for diffusion problems: conforming elements, SIAM J. Numer. Anal., 50 (2012), 151-170. https://doi.org/10.1137/100803857
- C. Carstensen and C. Merdon, Effective postprocessing for equilibration a posteriori error estimators, Numer. Math., 123 (2013), 425-459. https://doi.org/10.1007/s00211-012-0494-4
- P. Destuynder and B. Metivet, Explicit error bounds in a conforming finite element method, Math. Comp., 68 (1999), 1379-1396. https://doi.org/10.1090/S0025-5718-99-01093-5
- A. Ern and M. Vohralik, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53 (2015), 1058-1081. https://doi.org/10.1137/130950100
- R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., 42 (2004), 1394-1414. https://doi.org/10.1137/S0036142903433790
- T. Vejchodsky, Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal., 26 (2006), 525-540. https://doi.org/10.1093/imanum/dri043
- R. Verfurth, A note on constant-free a posteriori error estimates, SIAM J. Numer. Anal., 47 (2009), 3180- 3194. https://doi.org/10.1137/080726239
- M. Vohralik, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput., 46 (2011), 397-438. https://doi.org/10.1007/s10915-010-9410-1
- A. Ern and M. Vohralik, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput., 35 (2013), A1761-A1791. https://doi.org/10.1137/120896918
- P. Jiranek, Z. Strako s and M. Vohral ik, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), 1567-1590. https://doi.org/10.1137/08073706X
- M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, John Wiley & Sons, New York, 2000.
- K.-Y. Kim, Postprocessing for guaranteed error bound based on equilibrated fluxes, J. Korean Math. Soc., 52 (2015), 891-906. https://doi.org/10.4134/JKMS.2015.52.5.891
- P. Grisvard, Elliptic problems in non-smooth domains, Monographs and studies in mathematics 24, Pitman, Boston, 1985.
- Q. Lin, H. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comp., 83 (2014), 1-13. https://doi.org/10.1090/S0025-5718-2013-02724-X
- Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp., 77 (2008), 1253-1268. https://doi.org/10.1090/S0025-5718-08-02051-6
- H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal., 45 (2007), 1701-1722. https://doi.org/10.1137/060661430
- D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications, Springer series in computational mathematics 44, Springer, Heidelberg, 2013.
- S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer, New York, 2008.
- R. E. Bank and Y. Li, Superconvergent recovery of Raviart-Thomas mixed finite element on triangular grids, J. Sci. Comput., 81 (2019), 1882-1905. https://doi.org/10.1007/s10915-019-01068-0