DOI QR코드

DOI QR Code

SUPERCONVERGENCE AND POSTPROCESSING OF EQUILIBRATED FLUXES FOR QUADRATIC FINITE ELEMENTS

  • KWANG-YEON KIM (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
  • Received : 2023.10.30
  • Accepted : 2023.12.25
  • Published : 2023.12.25

Abstract

In this paper we discuss some recovery of H(div)-conforming flux approximations from the equilibrated fluxes of Ainsworth and Oden for quadratic finite element methods of second-order elliptic problems. Combined with the hypercircle method of Prager and Synge, these flux approximations lead to a posteriori error estimators which provide guaranteed upper bounds on the numerical error. Furthermore, we prove some superconvergence results for the flux approximations and asymptotic exactness for the error estimator under proper conditions on the triangulation and the exact solution. The results extend those of the previous paper for linear finite element methods.

Keywords

References

  1. R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44 (1985), 283-301. https://doi.org/10.1090/S0025-5718-1985-0777265-X
  2. R. G. Duran and R. Rodr iguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math., 62 (1992), 297-303. https://doi.org/10.1007/BF01396231
  3. K.-Y. Kim and J.-S. Park, Asymptotic exactness of some Bank-Weiser error estimator for quadratic triangular finite element, Bull. Korean Math. Soc., 57 (2020), 393-406.
  4. A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math., 106 (2007), 225-253. https://doi.org/10.1007/s00211-007-0064-3
  5. R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part I: grids with superconvergence, SIAM J. Numer. Anal., 41 (2003), 2294-2312. https://doi.org/10.1137/S003614290139874X
  6. N. Levine, Superconvergent recovery of the gradient from piecewise linear finite-element approximations, IMA J. Numer. Anal., 5 (1985), 407-427. https://doi.org/10.1093/imanum/5.4.407
  7. A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal., 42 (2004), 1780-1800. https://doi.org/10.1137/S0036142903413002
  8. J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp., 73 (2004), 1139-1152.
  9. O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg., 101 (1992), 207-224. https://doi.org/10.1016/0045-7825(92)90023-D
  10. W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math., 5 (1947), 241-269. https://doi.org/10.1090/qam/25902
  11. M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math., 234 (2010), 2618-2632. https://doi.org/10.1016/j.cam.2010.01.037
  12. D. Braess, V. Pillwein and J. Schoberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1189-1197. https://doi.org/10.1016/j.cma.2008.12.010
  13. D. Braess and J. Schoberl, Equilibrated residual error estimator for edge elements, Math. Comp., 77 (2008), 651-672. https://doi.org/10.1090/S0025-5718-07-02080-7
  14. Z. Cai and S. Zhang, Robust equilibrated residual error estimator for diffusion problems: conforming elements, SIAM J. Numer. Anal., 50 (2012), 151-170. https://doi.org/10.1137/100803857
  15. C. Carstensen and C. Merdon, Effective postprocessing for equilibration a posteriori error estimators, Numer. Math., 123 (2013), 425-459. https://doi.org/10.1007/s00211-012-0494-4
  16. P. Destuynder and B. Metivet, Explicit error bounds in a conforming finite element method, Math. Comp., 68 (1999), 1379-1396. https://doi.org/10.1090/S0025-5718-99-01093-5
  17. A. Ern and M. Vohralik, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53 (2015), 1058-1081. https://doi.org/10.1137/130950100
  18. R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., 42 (2004), 1394-1414. https://doi.org/10.1137/S0036142903433790
  19. T. Vejchodsky, Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal., 26 (2006), 525-540. https://doi.org/10.1093/imanum/dri043
  20. R. Verfurth, A note on constant-free a posteriori error estimates, SIAM J. Numer. Anal., 47 (2009), 3180- 3194. https://doi.org/10.1137/080726239
  21. M. Vohralik, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput., 46 (2011), 397-438. https://doi.org/10.1007/s10915-010-9410-1
  22. A. Ern and M. Vohralik, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput., 35 (2013), A1761-A1791. https://doi.org/10.1137/120896918
  23. P. Jiranek, Z. Strako s and M. Vohral ik, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), 1567-1590. https://doi.org/10.1137/08073706X
  24. M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, John Wiley & Sons, New York, 2000.
  25. K.-Y. Kim, Postprocessing for guaranteed error bound based on equilibrated fluxes, J. Korean Math. Soc., 52 (2015), 891-906. https://doi.org/10.4134/JKMS.2015.52.5.891
  26. P. Grisvard, Elliptic problems in non-smooth domains, Monographs and studies in mathematics 24, Pitman, Boston, 1985.
  27. Q. Lin, H. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comp., 83 (2014), 1-13. https://doi.org/10.1090/S0025-5718-2013-02724-X
  28. Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp., 77 (2008), 1253-1268. https://doi.org/10.1090/S0025-5718-08-02051-6
  29. H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal., 45 (2007), 1701-1722. https://doi.org/10.1137/060661430
  30. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications, Springer series in computational mathematics 44, Springer, Heidelberg, 2013.
  31. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Springer, New York, 2008.
  32. R. E. Bank and Y. Li, Superconvergent recovery of Raviart-Thomas mixed finite element on triangular grids, J. Sci. Comput., 81 (2019), 1882-1905. https://doi.org/10.1007/s10915-019-01068-0