DOI QR코드

DOI QR Code

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN (DEPARTMENT OF MATHEMATICS, GANGNEUNG-WONJU NATIONAL UNIVERSITY)
  • Received : 2023.08.13
  • Accepted : 2023.12.16
  • Published : 2023.12.25

Abstract

The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.

Keywords

Acknowledgement

This study was supported by Gangneung-Wonju National University.

References

  1. C. P. Ellington, C. van den Berg, A. P. Willmott, and A. L. R. Thomas, Leading-edge vortices in insect flight, Nature 384 (1996), 626-630. https://doi.org/10.1038/384626a0
  2. M. Nitsche and R. Krasny, A numerical study of vortex ring formation at the edge of a circular tube, J. Fluid Mech. 276 (1994), 139-161. https://doi.org/10.1017/S0022112094002508
  3. M. A. Jones, The separated flow of an inviscid fluid around a moving flat plate, J. Fluid Mech. 496 (2003), 405-441. https://doi.org/10.1017/S0022112003006645
  4. R. K. Shukla and J. D. Eldredge, An inviscid model for vortex shedding from a deforming body, Theo. Comput. Fluid Dyn. 21 (2007), 343-368. https://doi.org/10.1007/s00162-007-0053-2
  5. M. A. Jones and M. J. Shelley, Falling cards, J. Fluid Mech. 540 (2005), 393-425. https://doi.org/10.1017/S0022112005005859
  6. S. Alben, Flexible sheets falling in an inviscid fluid, Phys. Fluids 22 (2010), 061901.
  7. S. Alben and M. J. Shelley, Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos, Phys. Rev. Lett. 100 (2008), 074301.
  8. Y. Huang, M. Nitsche, and E. Kanso, Hovering in oscillatory flows, J. Fluid Mech. 804 (2016), 531-549. https://doi.org/10.1017/jfm.2016.535
  9. F. Feng, K. L. Ho, L. Ristroph, and M. J. Shelley, A computational model of the fight dynamics and aerodynamics of a jellyfish-like fying machine, J. Fluid Mech. 819 (2017), 621-655. https://doi.org/10.1017/jfm.2017.150
  10. S.-I. Sohn, Inviscid vortex shedding model for the clap and fling motion of insect flights, Phys. Rev. E. 98 (2018), 033105.
  11. Y. Huang, L. Ristroph, M. Luhar, and E. Kanso, Bistability in the rotational motion of rigid and flexible fyers, J. Fluid Mech. 849 (2018), 1043-1067. https://doi.org/10.1017/jfm.2018.446
  12. S. Alben, Simulating the dynamics of flexible bodies and vortex sheets, J. Comput. Phys. 228 (2009), 2587-2603. https://doi.org/10.1016/j.jcp.2008.12.020
  13. S.-I. Sohn, A computational model of the swimming dynamics of a fish-like body in two dimensions, Phys. Fluids 33 (2021), 121902.
  14. S.-I. Sohn, An inviscid model of unsteady separated vortical flow for a moving plate, Theo. Comput. Fluid Dyn. 34 (2020), 187-213. https://doi.org/10.1007/s00162-020-00524-0
  15. S. Michelin and S. G. Llewellyn Smith, An unsteady point vortex method for coupled fluid-solid problems, Theo. Comput. Fluid Dyn. 23 (2009), 127-153. https://doi.org/10.1007/s00162-009-0096-7
  16. L. Xu, M. Nitsche, and R. Krasny, Computation of the starting vortex flow past a flat plate, Procedia IUTAM 20, 2017.
  17. G. Birkhoff, Helmholtz and Taylor instability, Proc. Symposia in Applied Mathematics, Vol. XIII, American Mathematical Society, Providence, 1962.
  18. N.I. Muskhelishvili, Singular integral equations: boundary problems of function theory and their application to mathematical physics, Wolters-Noordhoff, Groningen, Netherlands, 1958.
  19. R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys. 65 (1986), 292-313. https://doi.org/10.1016/0021-9991(86)90210-X
  20. S.-I. Sohn, Two vortex-blob regularization models for vortex sheet motion, Phys. Fluids 26 (2014), 044105.
  21. C. Wang and J. D. Eldredge, Low-order phenomenological modeling of leading-edge vortex formation, Theo. Comput. Fluid Dyn. 27 (2013), 577-598. https://doi.org/10.1007/s00162-012-0279-5
  22. K. K. Chen, T. Colonius, and K. Taira, The leading-edge vortex and quasisteady vortex shedding on an accelerating plate, Phys. Fluids 22 (2010), 033601.