DOI QR코드

DOI QR Code

Alice Springs Orogeny (ASO) Footprints Tracing in Fresh Rocks in Arunta Region, Central Australia, Using Uranium/Lead (U-Pb) Geochronology

  • Kouame Yao (Macquarie University, Department of Earth and Planetary Sciences, Faculty of Science and Engineering) ;
  • Mohammed O. Idrees (Department of Surveying and Geoinformatics, Faculty of Environmental Sciences, University of Abuja) ;
  • Abdul-Lateef Balogun (Environmental Systems Research Institute (ESRI)) ;
  • Mohamed Barakat A. Gibril (GIS and Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah)
  • Received : 2023.03.13
  • Accepted : 2023.11.07
  • Published : 2023.12.29

Abstract

This study investigates the age of the surficial rocks in the Arunta region using Uranium-Lead (U-Pb) geochronological dating. Rock samples were collected at four locations, Cattle-Water Pass (CP 1610), Gough Dam (GD 1622 and GD 1610), and London-Eye (LE 1601), within the Strangways Metamorphic Complex and crushed by selFragging. Subsequently, the zircon grains were imaged using Cathodoluminescence (CL) analysis and the U-Pb (uranium and lead) isotope ratios and the chrono-stratigraphy were measured. The imaged zircon revealed an anomalous heterogeneous crystal structure. Ellipses of the samples at locations GD1601, CP1610, and GD1622 fall below the intercept indicating the ages produced discordant patterns, whereas LE1601 intersects the Concordia curve at two points, implying the occurrence of an event of significant impact. For the rock sample at CP1610, the estimated mean age is 1742.2 ± 9.2 Ma with mean squared weighted deviation (MSWD) = 0.49 and probability of equivalence of 0.90; 1748 ± 15 Ma - MSWD = 1.02 and probability of equivalence of 0.40 for GD1622; and 1784.4 ± 9.1 Ma with MSWD of 1.09 and probability of equivalence of 0.37 for LE1601. But for samples at GD1601, two different age groups with different means occurred: 1) below the global mean (1792.2 ± 32 Ma) estimated at 1738.2 ± 14 Ma with MSWD of 0.109 and probability of equivalence of 0.95 and 2) above it with mean of 1838.22 ± 14 Ma, MSWD of 1.6 and probability of equivalence of 0.95. Analysis of the zircon grains has shown a discrepancy in the age range between 1700 Ma and 1800 Ma compared to the ASO dated to have occurred between 440 and 300 Ma. Moreover, apparent similarity in age of the core and rim means that the mineral crystallized relatively quickly without significant interruptions and effect on the isotopic system. This may have constraint the timing and extent of geological events that might have affected the mineral, such as metamorphism or hydrothermal alteration.

Keywords

Acknowledgement

The authors would like to thank the CSIRO Veteran Dr Steve Craven, the Lab analytical instrumentation expert, Dr Timothy Murphy and the Metamorphic Petrologist, Assoc. Prof. Dr Nathan Daczko, all from Macquarie University, North Ryde, and members of the Australian Research Council Centre of Excellence for Core to Crust Fluid Systems (ARCC) and the Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC).

References

  1. Aitken, A.R.A., Betts, P.G. and Ailleres, L. (2009) The architecture, kinematics, and lithospheric processes of a compressional intraplate orogen occurring under Gondwana assembly: The Petermann orogeny, central Australia. Lithosphere, v.1(6), p.343-357. https://doi.org/10.1130/L39.1
  2. Ashraf, U., Kanu, A.S., Deng, Q., Mo, Z., Pan, S., Tian, H. and Tang, X. (2017) Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Science, 8(February). https://doi.org/10.3389/fpls.2017.00259
  3. Black, L.P. and Gulson, B.L. (1978) The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J. Austral. Geol. Geophy., v.3(1968), p.227-232.
  4. Bradshaw, J.D. and Evans, P.R. (1988) Palaeozoic Tectonics, Amadeus Basin, Central Australia. The APPEA Journal, v.28(1), p.267-282. https://doi.org/https://doi.org/10.1071/AJ87021
  5. Burnham, A.D. and Berry, A.J. (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, v.95, p.196-212. https://doi.org/10.1016/j.gca.2012.07.034
  6. Cluzel, D., Adams, C.J., Maurizot, P. and Meffre, S. (2011) Detrital zircon records of Late Cretaceous syn-rift sedimentary sequences of New Caledonia: An Australian provenance questioned. Tectonophysics, v.501(1-4), p.17-27. https://doi.org/10.1016/j.tecto.2011.01.007
  7. Collins, W.J. and Shaw, R.D. (1995) Geochronological constraints on orogenic events in the Arunta Inlier: a review. Precambrian Research, v.71(1-4), p.315-346. https://doi.org/10.1016/0301-9268(94)00067-2
  8. Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P. (2018) Atlas of zircon textures. In Zircon (pp. 469-500).
  9. Craven, S.J., Daczko, N.R. and Halpin, J.A. (2012) Thermal gradient and timing of high-T-low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. Journal of Metamorphic Geology, v.30(1), p.3-20. https://doi.org/10.1111/j.1525-1314.2011.00949.x
  10. Davis, D.W., Williams, I.S. and Krogh, T.E. (2018) Historical development of zircon geochronology. In Zircon (pp. 145-181). https://doi.org/10.1515/9781501509322-009
  11. Ding, P. and James, P.R. (1985) Structural evolution of the Harts Range Area and its implication for the development of the Arunta Block, central Australia. Precambrian Research, v.27(1-3), p.251-276. https://doi.org/10.1016/0301-9268(85)90015-4
  12. Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J. and O'Reilly, S.Y. (2006) Trace Element and IsotopicComposition of GJ Red ZirconStandard by Laser Ablation. Geochmica et Cosmochimica Acta, 70(18). https://doi.org/10.1016/j.gca.2006.06.1383
  13. Flottmann, T., Hand, M., Close, D., Edgoose, C. and Scrimgeour, I. (2004) Thrust Tectonic Styles of the Intracratonic Alice Springs and Petermann Orogenies, Central Australia. In K. R. McClay (Ed.), Thrust Tectonic and Hydrocarbon Systems. American Association of Petroleum Geologists. https://doi.org/https://doi.org/10.1306/M82813C28
  14. Gaynor, S.P., Ruiz, M. and Schaltegger, U. (2022) The importance of high precision in the evaluation of U-Pb zircon age spectra. Chemical Geology, 603. https://doi.org/10.1016/j.chemgeo.2022.120913
  15. Geol. (2003) Isotope Geochemistry: Geochronology - The U-TH-PB System Zircon Dating. Spring. http://www.geo.cornell.edu/geology/classes/Geo656/656notes03/656 03Lecture09.pdf
  16. Ghatak, H., Gardner, R.L., Daczko, N.R., Piazolo, S. and Milan, L. (2022) Oxide enrichment by syntectonic melt-rock interaction. Lithos, 414-415(January), 106617. https://doi.org/10.1016/j.lithos.2022.106617
  17. Grasemann, B. and Huet, B. (2014) Orogeny. In Encyclopedia of Marine Geosciences (Harff, J., pp. 1-15). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-007-6644-0_123-1
  18. Haines, P.W., Hand, M. and Sandiford, M. (2001) Palaeozoic synorogenic sedimentation in Central and Northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. Australian Journal of Earth Sciences, v.48(6), p.911-928. https://doi.org/10.1046/j.1440-0952.2001.00909.x
  19. Hoeve, T.J. Ver. (2013) Trace Element Systematics of Zircon from Granophyres of the Stillwater Complex (Issue April). The University of British Columbia.
  20. Horn, I., Rudnick, R.L. and McDonough, W.F. (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chemical Geology, v.164(3-4), p.281-301. https://doi.org/10.1016/S0009-2541(99)00168-0
  21. Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, v.211(1-2), p.47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
  22. Karlstrom, K., Hagadorn, J., Gehrels, G., Matthews, W., Schmitz, M., Madronich, L., Mulder, J., Pecha, M., Giesler, D. and Crossey, L. (2018) Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons. Nature Geoscience, v.11(6), p.438-443. https://doi.org/10.1038/s41561-018-0131-7
  23. Kearey, P., Klepeis, K.A. and Vine, F.J. (2009) Global Tectonics (3rd Editio). Wiley-Blackwell.
  24. Kis, A., Weiszburg, T.G., Dunkl, I., Koller, F., Vaczi, T. and Buda, G. (2023) Interpretation of wide zircon U-Pb age distributions in durbachite-type Variscan granitoid in the Moragy Hills. Mineralogy and Petrology, 0123456789. https://doi.org/10.1007/s00710-023-00817-2
  25. Kosler, J. and Sylvester, P.J. (2018) Present trends and the future of zircon in geochronology: Laser ablation ICPMS. In Zircon (pp. 243-275). De Gruyter Mouton. https://doi.org/10.1515/9781501509322-012
  26. Kovaleva, E. and Klotzli, U. (2014) Crystallographically controlled crystal-plastic deformation of zircon in shear zones. Geophysical Research Abstracts, 16, 3678.
  27. La Fontaine, A., Piazolo, S., Trimby, P., Yang, L. and Cairney, J.M. (2017) Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study. Microscopy and Microanalysis, v.23(2), p.404-413. https://doi.org/10.1017/S1431927616012745
  28. Latkoczy, C. and Gunther, D. (2002) Enhanced sensitivity in inductively coupled plasma sector field mass spectrometry for direct solid analysis using laser ablation (LA-ICP-SFMS). Journal of Analytical Atomic Spectrometry, v.17(10), p.1264-1270. https://doi.org/10.1039/b204532j
  29. Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J. and Chen, H.H. (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, v.55(15), p.1535-1546. https://doi.org/10.1007/s11434-010-3052-4
  30. Mabbutt, J.A. (1969) Land forms of Arid Australia. In R.O. Slatyer & R.A. Perry (Eds.), Arid Lands of Australia: Proceedings of a Symposium held in the Academy of Science, Canberra (pp. 11-32). Australian National University Press, Canberra.
  31. Maidment, D.W., Hand, M. and Williams, I.S. (2005) Tectonic cycles in the Strangways Metamorphic Complex, Arunta Inlier, central Australia: Geochronological evidence for exhumation and basin formation between two high-grade metamorphic events. Australian Journal of Earth Sciences, v.52(2), p.205-215. https://doi.org/10.1080/08120090500139414
  32. Manduca, C.A. and Kastens, K.A. (2012) Geoscience and geoscientists: Uniquely equipped to study Earth. Special Paper of the Geological Society of America, v.486, p.1-12. https://doi.org/10.1130/2012.2486(01)
  33. Marjoribanks, R.W. and Black, L.P. (1974) Geology and geochronology of the arunta complex north of ormiston gorge, central Australia. Journal of the Geological Society of Australia, v.21(3), p.291-299. https://doi.org/10.1080/00167617408728852
  34. McLaren, S., Sandiford, M., Dunlap, W.J., Scrimgeour, I., Close, D. and Edgoose, C. (2009) Distribution of palaeozoic reworking in the Western Arunta Region and northwestern Amadeus Basin from 40Ar/39Ar thermochronology: Implications for the evolution of intracratonic basins. Basin Research, v.21(3), p.315-334. https://doi.org/10.1111/j.1365-2117.2008.00385.x
  35. Mezger, K. and Krogstad, E.J. (1997) Interpretation of discordant U-Pb zircon ages: An evaluation. Journal of Metamorphic Geology, v.15(1), p.127-140. https://doi.org/10.1111/j.1525-1314.1997.00008.x
  36. Neymark, L.A., Holm-Denoma, C.S., Larin, A.M., Moscati, R.J. and Plotkina, Y.V. (2021) LA-ICPMS U-Pb dating reveals cassiterite inheritance in the Yazov granite, Eastern Siberia: Implications for tin mineralization. Mineralium Deposita, v.56(6), p.1177-1194. https://doi.org/10.1007/s00126-020-01038-9
  37. Norman, A.R. (1991) The structural and metamorphic evolution of the central Arunta Block: evidence from the Strangways Metamorphic Complex and the Harts Range Group, central Australia. Macquarie University.
  38. Page, R.W. (1978) Response of u-pb zircon and rb-sr total-rock and mineral systems to low-grade regional metamorphism in proterozoic igneous rocks, mount isa, Australia. Journal of the Geological Society of Australia, v.25(3-4), p.141-164. https://doi.org/10.1080/00167617808729025
  39. Page, R.W. (1988) Geochronology of early to middle Proterozoic fold belts in northern Australia: a review. Precambrian Research, v.40-41(C), p.1-19. https://doi.org/10.1016/0301-9268(88)90058-7
  40. Passarelli, C.R., Basei, M.A.S., Siga, O., Sato, K., Sproesser, W.M. and Loios, V.A.P. (2009) Dating minerals by ID-TIMS geochronology at times of in situ analysis: Selected case studies from the CPGeo-IGc-USP laboratory. Anais Da Academia Brasileira de Ciencias, v.81(1), p.73-97. https://doi.org/10.1590/S0001-37652009000100010
  41. Paxton, J. (2016) Australia. In J. Paxton (Ed.), The Statesman's Year-Book 1979-80. Palgrave Macmillan London. https://doi.org/https://doi.org/10.1057/9780230271081
  42. Philpotts, A.R. and Ague, J.J. (2022) Principles of Igneous and Metamorphic Petrology (3rd editio). https://doi.org/https://doi.org/10.1017/9781108631419
  43. SELFRAG. (2021) Selfrag LAB System - pulsed power selective fragmentation. SELFRAG Manual. https://www.axt.com.au/products/selfrag-lab-selective-fragmentation/
  44. Shaw, R.D., Stewart, A.J. and Black, L.P. (1984) The Arunta Inlier: A complex ensialic mobile belt in central Australia. part 2: Tectonic history. Australian Journal of Earth Sciences, v.31(4), p.457-484. https://doi.org/10.1080/08120098408729305
  45. Silveira Braga, F.C., Rosiere, C.A., Schneider Santos, J.O., Hagemann, S.G., McNaughton, N.J. and Valle Salles, P. (2019) The Horto-Baratinha itabirite-hosted iron ore: A basal fragment of the Espinhaco basin in the eastern Sao Francisco Craton. Journal of South American Earth Sciences, v.90, p.12-33. https://doi.org/10.1016/j.jsames.2018.11.013
  46. Silver, L.T. and Deutsch, S. (1963) Uranium-Lead Isotopic Variations in Zircons: A Case Study. The Journal of Geology, v.71(6), p.721-758. https://doi.org/10.1086/626951
  47. Sircombe, K.N. and Stern, R.A. (2002) An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation. Geochimica et Cosmochimica Acta, v.66(13), p.2379-2397. https://doi.org/10.1016/S0016-7037(02)00839-6
  48. Sperner, B., Jonckheere, R. and Pfander, J.A. (2014) Testing the influence of high-voltage mineral liberation on grain size, shape and yield, and on fission track and 40Ar/39Ar dating. Chemical Geology, v.371, p.83-95. https://doi.org/10.1016/j.chemgeo.2014.02.003
  49. Stewart, A.J., Shaw, R.D. and Black, L.P. (1984) The Arunta Inlier: A complex ensialic mobile belt in central Australia. part 1: Stratigraphy, correlations and origin. Australian Journal of Earth Sciences, v.31(4), p.445-455. https://doi.org/10.1080/08120098408729304
  50. Vavra, G. (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contributions to Mineralogy and Petrology, v.117(4), p.331-344. https://doi.org/10.1007/BF00307269
  51. Warren, R.G. (1983) Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia. Nature, v.305(22 September), p.300-303. https://doi.org/10.1038/305300a0
  52. Wells, R.D., Larson, J.E., Grant, R.C., Shortle, B.E. and Cantor, C.R. (1970) Physicochemical studies on polydeoxyribonucleotides containing defined repeating nucleotide sequences. Journal of Molecular Biology, v.54(3), p.465-497. https://doi.org/10.1016/0022-2836(70)90121-X
  53. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A. Von, Roddick, J.C. and Spiegel, W. (1995) Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Re-Analyses. Geostandards Newsletter, v.19(1), p.1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
  54. Wilde, S.A., Valley, J.W., Peck, W.H. and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, v.409(6817), p.175-178. https://doi.org/10.1038/35051550