DOI QR코드

DOI QR Code

온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment

  • 서현수 (고려대학교 지구환경과학과) ;
  • 이정환 (한국원자력환경공단) ;
  • 박선주 ((주)어스이엔지) ;
  • 오준섭 (고려대학교 지구환경과학과) ;
  • 최재훈 (고려대학교 지구환경과학과) ;
  • 이종태 (한국중앙온천연구소) ;
  • 윤성택 (고려대학교 지구환경과학과)
  • Hyunsoo Seo (Department of Earth and Environmental Sciences, Korea University) ;
  • Jeong-Hwan Lee (Korea Radioactive Waste Agency) ;
  • SunJu Park (Earth ENG Co.) ;
  • Junseop Oh (Department of Earth and Environmental Sciences, Korea University) ;
  • Jaehoon Choi (Department of Earth and Environmental Sciences, Korea University) ;
  • Jong-Tae Lee (Korea Central Hot Spring Institute) ;
  • Seong-Taek Yun (Department of Earth and Environmental Sciences, Korea University)
  • 투고 : 2023.12.07
  • 심사 : 2023.12.10
  • 발행 : 2023.12.29

초록

전기 자동차 및 배터리에 대한 수요가 증가함에 따라 리튬의 가치가 크게 증가하였다. 리튬은 주로 페그마타이트, 열수변질을 받은 응회암질 퇴적 점토 및 대륙성 염수에서 발견된다. 전 세계적으로 지하수로 공급되는 염호와 유전 염수는 세계 리튬 생산량의 약 70%를 차지하는 대륙 염수의 주요 리튬 공급원으로 주목받고 있다. 최근에는 심부 지하수, 특히 지열수도 리튬의 잠재적 공급원으로 연구되고 있다. 심부 지하수의 리튬 농도는 상당한 물-암석 반응과 염수와의 혼합을 통해 증가할 수 있다. 심부 지하수 중의 리튬 탐사를 위해서는 그 기원과 거동을 이해하는 것이 중요하다. 따라서 본 연구에서는 전국적인 규모에서 국내 온천지역 지열수의 수문지화학 특성과 진화에 관한 예비연구를 바탕으로, 심부 지하수 환경에서의 리튬의 분포를 평가하고 그 농도에 영향을 미치는 지구화학적 요인을 이해하고자 하였다. 총 555개의 온천 지하수 시료 자료는 수화학적 특성에 따라 뚜렷한 지화학 진화 특성을 갖는 5가지 유형으로 분류되었다. 또한, 리튬의 부화 기작을 평가하기 위해 리튬 농도가 90번째 백분위수(0.94 mg/L)를 초과하는 시료(n = 56)에 대해 자세히 고찰하였다. 리튬의 농도는 수화학 유형에 따라 유의미한 차이를 보였는데, Na(Ca)-Cl유형, Ca(Na)-SO4유형, pH가 낮은 Ca(Na)-HCO3 유형 순이었다. Ca(Na)-Cl 유형에서 리튬 부화는 해수침투에 따른 역이온 교환으로 발생한다. 백악기 화산퇴적 분지에서 특징적으로 나타나는 Ca(Na)-SO4 유형 지하수에서 용존 리튬의 부화는 열수 변질 점토 광물의 산출 및 화산활동과 관련이 있는 반면, 낮은 pH의 Ca(Na)-HCO3 유형 지하수에서는 심부 CO2의 상승 혼입에 의한 기반암의 풍화 촉진으로 인해 리튬 부화가 일어난 것으로 해석된다. 본 광역 예비 지화학 연구 결과는 심부 지질환경에서의 수문지화학 진화에 대한 이해와 함께 향후 경제성 있는 리튬 탐사 지침과 관련하여 유용한 정보를 제공할 것이다.

The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 "사용후핵연료관리핵심기술개발사업단" 및 한국에너지기술평가원의 지원을 받아 수행된 연구사업의 결과임(과제번호 2021040101003C; 과제명 "사용후핵연료 처분 부지평가기술 및 안전성 입증체계 구축").

참고문헌

  1. Alexeev, S.V., Alexeeva, L.P. and Vakhromeev, A.G. (2020) Brines of the Siberian platform (Russia): geochemistry and processing prospects. Appl. Geochem., v.117, 104588, doi:10.1016/j.apgeochem.2020.104588.
  2. Appelo, C.A.J. (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour. Res., v.30, p.2793-2805, doi:10.1029/94WR01048.
  3. Benson, T.R., Coble, M.A., Rytuba, J.J. and Mahood, G.A. (2017) Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun., v.8, 270, doi:10.1038/s41467-017-00234-y.
  4. Bowell, R.J., Lagos, L., de los Hoyos, C.R. and Declercq, J. (2020) Classification and characteristics of natural lithium resources. Elements, v.16, p.259-264, doi:10.2138/GSELEMENTS.16.4.259
  5. Bradley, D.C., McCauley, A.D. and Stillings, L.L. (2017) Mineral-deposit model for lithium-cesium-tantalum pegmatites. US Geol. Surv. Sci. Invest. Report 2010-5070-O, doi: 10.3133/sir20105070O
  6. Brenner, T.E.F. and Glanzman, R.K. (1978) Lithium-bearing rocks of the horse spring formation, Clark County, Nevada. Lithium needs and resources. Energy 3, p.255-262, doi:10.1016/B978-0-08-022733-7.50009-5.
  7. Burns, D.A., Plummer, L.N., McDonnell, J.J., Busenberg, E., Casile, G.C., Kendall, C., Hooper, R.P., Freer, J.E., Peters, N.E., Beven, K. and Schlosser, P. (2003) The geochemical evolution of riparian ground water in a forested piedmont catchment. Groundwater, v.41, p.913-925, doi:10.1111/j.1745-6584.2003.tb02434.x.
  8. Castor, S.B. and Henry, C.D. (2020) Lithium-rich claystone in the Mcdermitt caldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin. Minerals, v.10, p.68, doi:10.3390/min10010068.
  9. Cern , P. and Ercit, T.S. (2005) The classification of granite pegmatites revisited. Canadian Mineralogist, v.43, p.2005-2026, doi:10.2113/GSCANMIN.43.6.2005.
  10. Chae, G.T., Yun, S.T., Choi, B.Y., Kim, K.J. and Shevalier, M. (2005) Geochemical Concept and Technical Development of Geological CO2 Sequestration for Reduction of CO2. Econ. Environ. Geol., v.38, p.1-22 (in Korean).
  11. Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. J. Hydrol., v.321, p.326-343, doi:10.1016/j.jhydrol.2005.08.006.
  12. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K. and Koh, Y.K. (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci. Total Environ., v.385, p.272-283, doi:10.1016/j.scitotenv.2007.06.038.
  13. Chae, G.T., Yun, S.T., Yun, S.M., Kim, K.H. and So, C.S. (2012) Seawater-freshwater mixing and resulting calcitedissolution: an example from a coastal alluvialaquifer in eastern South Korea. Hydrol. Sci. J., v.57, p.1672-1683, doi:10.1080/02626667.2012.727421.
  14. Choi, B.Y., Yun, S.T., Kim, K.H., Choi, H.S., Chae, G.T. and Lee, P.K. (2014) Geochemical modeling of CO2-water-rock interactions for two different hydrochemical types of CO2-rich springs in Kangwon District, Korea. J. Geochem. Explor., v.144, p.49-62, doi:10.1016/j.gexplo.2014.02.009.
  15. Choi, B.Y., Yun, S.T., Mayer, B., Hong, S.Y., Kim, K.H. and Jo, H.Y. (2012) Hydrogeochemical processes in clastic sedimentary rocks, South Korea: A natural analogue study of the role of dedolomitization in geologic carbon storage. Chem. Geol., v.306, p.103-113, doi:10.1016/J.CHEMGEO.2012.03.002.
  16. Choi, H.S., Koh, Y.K., Bae, D.S., Park, S.S., Hutcheon, I. and Yun, S.T. (2005) Estimation of deep-reservoir temperature of CO2-rich springs in Kangwon district, South Korea. J. Volcanol. Geotherm. Res., v.141, p.77-89, doi:10.1016/j.jvolgeores.2004.10.001.
  17. Choi, H.S., Yun, S.T., Koh, Y.K., Mayer, B., Park, S.S. and Hutcheon, I. (2009) Geochemical behavior of rare earth elements during the evolution of CO2-rich groundwater: A study from the Kangwon district, South Korea. Chem. Geol., v.262, p.318-327, doi:10.1016/j.chemgeo.2009.01.031.
  18. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth. Sci. Rev., doi:10.1016/j.earscirev.2010.05.004.
  19. Christmann, P., Gloaguen, E., Labbe, J.F., Melleton, J. and Piantone, P. (2015) Global Lithium Resources and Sustainability Issues, In: Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling. Elsevier Inc., pp.1-40, doi:10.1016/B978-0-12-801417-2.00001-3.
  20. Dalla Libera, N., Fabbri, P., Mason, L., Piccinini, L. and Pola, M. (2017) Geostatistics as a tool to improve the natural background level definition: An application in groundwater. Sci. Total Environ., v.598, p.330-340, doi:10.1016/j.scitotenv.2017.04.018.
  21. Dessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N. and Magnan, J.F. (2019) Spodumene: The lithium market, resources and processes. Minerals, v.9, p.334, doi:10.3390/min9060334.
  22. Do, H.K., Yu, S. and Yun, S.T. (2020) Hydrochemical parameters to assess the evolutionary process of CO2-rich spring water: A suggestion for evaluating CO2 leakage stages in silicate rocks. Water, v.12, p.1-19, doi:10.3390/w12123421.
  23. Dugamin, E.J.M., Richard, A., Cathelineau, M., Boiron, M.C., Despinois, F. and Brisset, A. (2021) Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Sci. Rep., v.11, p.1-10, doi:10.1038/s41598-021-99912-7.
  24. Ellis, B.S., Szymanowski, D., Magna, T., Neukampf, J., Dohmen, R., Bachmann, O., Ulmer, P. and Guillong, M. (2018) Post-eruptive mobility of lithium in volcanic rocks. Nat. Commun., v.9, 3228, doi:10.1038/s41467-018-05688-2.
  25. Federico, C., Aiuppa, A., Favara, R., Gurrieri, S. and Valenza, M. (2004) Geochemical monitoring of groundwaters (1998-2001) at Vesuvius volcano (Italy). J. Volcanol. Geotherm. Res., v.133, p.81-104, doi:10.1016/S0377-0273(03)00392-5.
  26. Frape, S.K., Blyth, A., Blomqvist, R., Mcnutt, R.H. and Gascoyne, M. (2003) Deep Fluids in the Continents: II. Crystalline Rocks. Treatise on Geochemistry, v.5, pp.541-580, Elsevier, Amsterdam. doi: 10.1016/B0-08-043751-6/05086-6
  27. Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S. and Wilcke, W. (2010) Lithium-air battery: promise and challenges. J. Phys. Chem. Lett., v.1, p.2193-2203, doi:10.1021/jz1005384.
  28. Godfrey, L.V., Chan, L.H., Alonso, R.N., Lowenstein, T.K., McDonough, W.F., Houston, J., Li, J., Bobst, A. and Jordan, T.E. (2013) The role of climate in the accumulation of lithium-rich brine in the central Andes. Appl. Geochem., v.38, p.92-102, doi:10.1016/j.apgeochem.2013.09.002.
  29. Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J. and Galiegue, X. (2019) Re-assessing the European lithium resource potential - A review of hard-rock resources and metallogeny. Ore. Geol. Rev., v.109, p.494-519, doi:10.1016/j.oregeorev.2019.04.015.
  30. Griffioen, J., Passier, H.F. and Klein, J. (2008) Comparison of selection methods to deduce natural background levels for groundwater units. Environ. Sci. Technol., v.42, p.4863-4869, doi:10.1021/es7032586.
  31. Haase, C., Dethlefsen, F., Ebert, M. and Dahmke, A. (2013) Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases. Appl. Geochem., v.33, p.306-317, doi:10.1016/j.apgeochem.2013.03.001.
  32. Hem, J.D. (1985) Study and interpretation of the chemical characteristics of natural water. US Geol. Surv. Water Supply Paper, v.2254, 264p. doi: 10.3133/wsp2254
  33. HofstrA, A.H., Todorov, I., MerCer, C.N., Adams, D.T. and Marsh, E.E. (2013) Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines. Econ. Geol., v.108, p.1691-1701. doi: 10.2113/econgeo.108.7.1691
  34. Hwang, J. (2002) Geochemistry of groundwater in limestone and granite of Hwanggangri fluorite mineralized area. J. Kor. Earth Sci. Soc., v.23, p.486-493 (in Korean).
  35. Jancsek, K., Janovszky, P., Galbcs, G. and Tth, T.M. (2023) Granite alteration as the origin of high lithium content of groundwater in southeast Hungary. Appl. Geochem., v.149, 105570, doi:10.1016/J.APGEOCHEM.2023.105570.
  36. Jeong, C.H., Kim, H.J. and Lee, S.Y. (2005) Hydrochemistry and genesis of CO2-rich springs from Mesozoic granitoids and their adjacent rocks in South Korea. Geochem. J., v.39, p.517-530. doi: 10.2343/GEOCHEMJ.39.517
  37. Kamineni, D.C., Mccrank, G.F. and Stone, D. (1987) Multiple alteration events in the East Bull Lake anorthosite-gabbro layered complex, NE Ontario, Canada: evidence from fracture mineralogy and 40Ar-39Ar dating. Appl. Geochem., v.2, p.73-80. doi: 10.1016/0883-2927(87)90062-X
  38. Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P. and Wallington, T.J. (2012) Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev., v.48, p.55-69, doi:10.1016/j.oregeorev.2012.05.006.
  39. Kharaka, Y.K. and Hanor, J.S. (2003) Deep Fluids in the Continents: I. Sedimentary Basins. In Treatise on Geochemistry, v.5, p.1-48, Elsevier, Amsterdam. doi: 10.1016/B0-08-043751-6/05085-4
  40. Kim, J.H., Kim, K.H., Thao, N.T., Batsaikhan, B. and Yun, S.T. (2017) Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam. J. Hydrol., v.549, p.703-714, doi:10.1016/j.jhydrol.2017.04.040.
  41. Kim, K., Jeong, D.H., Kim, Y., Koh, Y.K., Kim, S.H. and Park, E. (2008) The geochemical evolution of very dilute CO2-rich water in Chungcheong Province, Korea: processes and pathways. Geofluids, v.8, p.3-15, doi:10.1111/j.1468-8123.2007.00200.x.
  42. Kim, K.H., Yun, S.T., Yu, S., Choi, B.Y., Kim, M.J. and Lee, K.J. (2020) Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. J. Hydrol., v.589, 125202, doi:10.1016/j.jhydrol.2020.125202.
  43. KMA (2023). Accessed at October 27 2023, https://www.weather.go.kr/w/obs-climate/climate/statistics/korea-char.do.
  44. Koh, Y.K., Choi, B.Y., Yun, S.T., Choi, H.S., Mayer, B. and Ryoo, S.W. (2008) Origin and evolution of two contrasting thermal groundwaters (CO2-rich and alkaline) in the Jungwon area, South Korea: hydrochemical and isotopic evidence. J. Volcanol. Geotherm. Res., v.178, p.777-786, doi:10.1016/j.jvolgeores.2008.09.008
  45. Lee, D.W. (1999) Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Isl. Arc, v.8, p.218-231, doi.org/10.1046/j.1440-1738.1999.00233.x.
  46. Lee, G.J., Kim, S.Y. and Koh, S.M. (2013) Potential evaluation of the Uljin lithium deposit. Mineral and Industry (Korea), v.26, p.32-36 (in Korean).
  47. Lee J.T. (2021) The Status and Use of Hot Springs in Korea. Korea Central Hot Spring Institute (in Korean).
  48. Li, J., Wang, X., Ruan, C., Sagoe, G. and Li, J. (2022) Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China. J. Hydrol., v.612, 128022, doi:10.1016/j.jhydrol.2022.128022.
  49. Li, Q., Liu, D., Chen, C., Shao, Z., Wang, H., Liu, J., Zhang, Q. and Gadd, G.M. (2019) Experimental and geochemical simulation of nickel carbonate mineral precipitation by carbonate-laden ureolytic fungal culture supernatants. Environ. Sci. Nano, v.6, p.1866-1875, doi:10.1039/c9en00385a.
  50. Li, R., Liu, C., Jiao, P. and Wang, J. (2018) The tempo-spatial characteristics and forming mechanism of lithium-rich brines in China. China Geol., v.1, p.72-83, doi:10.31035/cg2018009.
  51. Lim, J.U., Lee, S.G., Yum, B.W. and Kim, H.C. (1996) Investigation of geothermal resources in Korea (geothermal resources maps). Research Report KR-96(C)-17, Korea Institute of Geology, Mining and Materials, Daejon, Korea (in Korean).
  52. Lindsey, B.D., Belitz, K., Cravotta, C.A., Toccalino, P.L. and Dubrovsky, N.M. (2021) Lithium in groundwater used for drinking-water supply in the United States. Sci. Total Environ., v.767, 144691, doi:10.1016/j.scitotenv.2020.144691.
  53. Logan, W.S. and Nicholson, R.V. (1997) Origin of dissolved groundwater sulphate in coastal plain sediments of the Rio de la Plata, Eastern Argentina. Aquat. Geochem., v.3, p.305-328. doi: 10.1023/A:1009680326095
  54. Marazuela, M.A., Ayora, C., Vazquez-Sune, E., Olivella, S. and Garcia-Gil, A. (2020) Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): A thermohaline flow modelling approach. Sci. Total Environ., v.739, 139959, doi:10.1016/j.scitotenv.2020.139959.
  55. McBean, E.A. and Rovers, F.A. (1998) Statistical Procedures for Analysis of Environmental Monitoring Data & Risk Assessment. Prentice Hall, Upper Saddle River.
  56. Mora, A., Mahlknecht, J., Ledesma-Ruiz, R., Sanford, W.E. and Lesser, L.E. (2020) Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities. J. Contam. Hydrol., v.232, 103653, doi:10.1016/j.jconhyd.2020.103653.
  57. Munk, A., Hynek, S.A., Bradley, D.C., Boutt, D., Labay, K. and Jochens, H. (2016) Lithium Brines: A Global Perspective (Chapter 14), p.339-365, Soc. Econ. Geol., doi:10.5382/Rev.18.14
  58. Newell, D.L., Crossey, L.J., Karlstrom, K.E., Fischer, T.P. and Hilton, D.R. (2005) Continental-scale links between the mantle and groundwater systems of the western United States: Evidence from travertine springs and regional He isotope data. GSA Today, v.15, p.4-10, doi:10.1130/1052-5173(2005)015<4:cslbtm>2.0.co;2.
  59. Oh, C., Lee, B., Lee, S., Kim, M., Lee, B. and Choi, S. (2016) The tectonic evolution and important geoheritages in the Jinan and Muju area, Jeollabuk-do. J. Geol. Soc. Korea, v.52, p.709-738 (in Korean), doi:10.14770/jgsk.2016.52.5.709.
  60. Russak, A., Sivan, O. and Yechieli, Y. (2016) Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers. Chem. Geol., v.441, p.35-46, doi:10.1016/j.chemgeo.2016.08.003.
  61. Ryang, W.H. (2013) Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. J. Geol. Soc. Korea, v.49, p.31-45 (in Korean). doi: 10.14770/jgsk.2013.49.1.31
  62. Rye, R.O., Back, W., Hanshaw, B.B., Rightmire, C.T. and Pearson, F.J. (1981) The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas. Geochim. Cosmochim. Acta, v.45, p.1941-1950. doi: 10.1016/0016-7037(81)90024-7
  63. Sanjuan, B., Gourcerol, B., Millot, R., Rettenmaier, D., Jeandel, E. and Rombaut, A. (2022) Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics, v.101, 102385, doi:10.1016/J.GEOTHERMICS.2022.102385.
  64. Sanjuan B, Gourcerol B., Rettenmaier D. and Jeandel E. (2020) Geothermal lithium resource assessment in Europe. European Institute of Innovation and Technology (EIT) Raw Materials EuGeLi Project, v.86.
  65. Santucci, L., Carol, E. and Kruse, E. (2016) Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Ro de la Plata littoral (Argentina). Sci. Total Environ., v.567, p.1640-1648, doi:10.1016/j.scitotenv.2016.06.066.
  66. Souid, F., Agoubi, B., Telahigue, F., Chahlaoui, A. and Kharroubi, A. (2018) Groundwater salinization and seawater intrusion tracing based on Lithium concentration in the shallow aquifer of Jerba Island, southeastern Tunisia. J. Afr. Earth Sci., v.138, p.233-246, doi:10.1016/j.jafrearsci.2017.11.013.
  67. Starkey, H.C. (1982) The role of clays in fixing lithium. United States Government Printing Office, Washington. doi: 10.3133/b1278F
  68. Sterba, J., Krzemien, A., Riesgo Fernandez, P., Escanciano GarciaMiranda, C. and Fidalgo Valverde, G. (2019) Lithium mining: Accelerating the transition to sustainable energy. Resour. Policy, v.62, p.416-426, doi:10.1016/j.resourpol.2019.05.002.
  69. Sung, K.Y., Yun, S.T., Park, M.E., Koh, Y.K., Choi, B.Y., Hutcheon, I. and Kim, K.H. (2012) Reaction path modeling of hydro-geochemical evolution of groundwater in granitic bedrocks, South Korea. J. Geochem. Explor., v.118, p.90-97, doi: 10.1016/j.gexplo.2012.05.004.
  70. Tabelin, C.B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S. and Canbulat, I. (2021) Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng., v.163, 106743, doi:10.1016/j.mineng.2020.106743.
  71. Tadesse, B., Makuei, F., Albijanic, B. and Dyer, L. (2019) The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng., v.131, p.170-184, doi:10.1016/j.mineng.2018.11.023.
  72. Turekian, K.K. and Wedepohl, K.H. (1961) Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull., v.72, p.175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  73. USGS (2020) Mineral Commodity Summaries 2020. Accessed at October 15 2023, https://www.usgs.gov/centers/national-minerals-information-center/lithium-statistics-and-information.
  74. Yalamanchali, R. (2012) Lithium, an emerging environmental contaminant, is mobile in the soil-plant system. Unpub. Master thesis, Lincoln University, New Zealand.