Acknowledgement
이 논문은 2022년도 정부(산업통상자원부)의 재원으로 "사용후핵연료관리핵심기술개발사업단" 및 한국에너지기술평가원의 지원을 받아 수행된 연구사업의 결과임(과제번호 2021040101003C; 과제명 "사용후핵연료 처분 부지평가기술 및 안전성 입증체계 구축").
References
- Alexeev, S.V., Alexeeva, L.P. and Vakhromeev, A.G. (2020) Brines of the Siberian platform (Russia): geochemistry and processing prospects. Appl. Geochem., v.117, 104588, doi:10.1016/j.apgeochem.2020.104588.
- Appelo, C.A.J. (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour. Res., v.30, p.2793-2805, doi:10.1029/94WR01048.
- Benson, T.R., Coble, M.A., Rytuba, J.J. and Mahood, G.A. (2017) Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun., v.8, 270, doi:10.1038/s41467-017-00234-y.
- Bowell, R.J., Lagos, L., de los Hoyos, C.R. and Declercq, J. (2020) Classification and characteristics of natural lithium resources. Elements, v.16, p.259-264, doi:10.2138/GSELEMENTS.16.4.259
- Bradley, D.C., McCauley, A.D. and Stillings, L.L. (2017) Mineral-deposit model for lithium-cesium-tantalum pegmatites. US Geol. Surv. Sci. Invest. Report 2010-5070-O, doi: 10.3133/sir20105070O
- Brenner, T.E.F. and Glanzman, R.K. (1978) Lithium-bearing rocks of the horse spring formation, Clark County, Nevada. Lithium needs and resources. Energy 3, p.255-262, doi:10.1016/B978-0-08-022733-7.50009-5.
- Burns, D.A., Plummer, L.N., McDonnell, J.J., Busenberg, E., Casile, G.C., Kendall, C., Hooper, R.P., Freer, J.E., Peters, N.E., Beven, K. and Schlosser, P. (2003) The geochemical evolution of riparian ground water in a forested piedmont catchment. Groundwater, v.41, p.913-925, doi:10.1111/j.1745-6584.2003.tb02434.x.
- Castor, S.B. and Henry, C.D. (2020) Lithium-rich claystone in the Mcdermitt caldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin. Minerals, v.10, p.68, doi:10.3390/min10010068.
- Cern , P. and Ercit, T.S. (2005) The classification of granite pegmatites revisited. Canadian Mineralogist, v.43, p.2005-2026, doi:10.2113/GSCANMIN.43.6.2005.
- Chae, G.T., Yun, S.T., Choi, B.Y., Kim, K.J. and Shevalier, M. (2005) Geochemical Concept and Technical Development of Geological CO2 Sequestration for Reduction of CO2. Econ. Environ. Geol., v.38, p.1-22 (in Korean).
- Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. J. Hydrol., v.321, p.326-343, doi:10.1016/j.jhydrol.2005.08.006.
- Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K. and Koh, Y.K. (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci. Total Environ., v.385, p.272-283, doi:10.1016/j.scitotenv.2007.06.038.
- Chae, G.T., Yun, S.T., Yun, S.M., Kim, K.H. and So, C.S. (2012) Seawater-freshwater mixing and resulting calcitedissolution: an example from a coastal alluvialaquifer in eastern South Korea. Hydrol. Sci. J., v.57, p.1672-1683, doi:10.1080/02626667.2012.727421.
- Choi, B.Y., Yun, S.T., Kim, K.H., Choi, H.S., Chae, G.T. and Lee, P.K. (2014) Geochemical modeling of CO2-water-rock interactions for two different hydrochemical types of CO2-rich springs in Kangwon District, Korea. J. Geochem. Explor., v.144, p.49-62, doi:10.1016/j.gexplo.2014.02.009.
- Choi, B.Y., Yun, S.T., Mayer, B., Hong, S.Y., Kim, K.H. and Jo, H.Y. (2012) Hydrogeochemical processes in clastic sedimentary rocks, South Korea: A natural analogue study of the role of dedolomitization in geologic carbon storage. Chem. Geol., v.306, p.103-113, doi:10.1016/J.CHEMGEO.2012.03.002.
- Choi, H.S., Koh, Y.K., Bae, D.S., Park, S.S., Hutcheon, I. and Yun, S.T. (2005) Estimation of deep-reservoir temperature of CO2-rich springs in Kangwon district, South Korea. J. Volcanol. Geotherm. Res., v.141, p.77-89, doi:10.1016/j.jvolgeores.2004.10.001.
- Choi, H.S., Yun, S.T., Koh, Y.K., Mayer, B., Park, S.S. and Hutcheon, I. (2009) Geochemical behavior of rare earth elements during the evolution of CO2-rich groundwater: A study from the Kangwon district, South Korea. Chem. Geol., v.262, p.318-327, doi:10.1016/j.chemgeo.2009.01.031.
- Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth. Sci. Rev., doi:10.1016/j.earscirev.2010.05.004.
- Christmann, P., Gloaguen, E., Labbe, J.F., Melleton, J. and Piantone, P. (2015) Global Lithium Resources and Sustainability Issues, In: Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling. Elsevier Inc., pp.1-40, doi:10.1016/B978-0-12-801417-2.00001-3.
- Dalla Libera, N., Fabbri, P., Mason, L., Piccinini, L. and Pola, M. (2017) Geostatistics as a tool to improve the natural background level definition: An application in groundwater. Sci. Total Environ., v.598, p.330-340, doi:10.1016/j.scitotenv.2017.04.018.
- Dessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N. and Magnan, J.F. (2019) Spodumene: The lithium market, resources and processes. Minerals, v.9, p.334, doi:10.3390/min9060334.
- Do, H.K., Yu, S. and Yun, S.T. (2020) Hydrochemical parameters to assess the evolutionary process of CO2-rich spring water: A suggestion for evaluating CO2 leakage stages in silicate rocks. Water, v.12, p.1-19, doi:10.3390/w12123421.
- Dugamin, E.J.M., Richard, A., Cathelineau, M., Boiron, M.C., Despinois, F. and Brisset, A. (2021) Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Sci. Rep., v.11, p.1-10, doi:10.1038/s41598-021-99912-7.
- Ellis, B.S., Szymanowski, D., Magna, T., Neukampf, J., Dohmen, R., Bachmann, O., Ulmer, P. and Guillong, M. (2018) Post-eruptive mobility of lithium in volcanic rocks. Nat. Commun., v.9, 3228, doi:10.1038/s41467-018-05688-2.
- Federico, C., Aiuppa, A., Favara, R., Gurrieri, S. and Valenza, M. (2004) Geochemical monitoring of groundwaters (1998-2001) at Vesuvius volcano (Italy). J. Volcanol. Geotherm. Res., v.133, p.81-104, doi:10.1016/S0377-0273(03)00392-5.
- Frape, S.K., Blyth, A., Blomqvist, R., Mcnutt, R.H. and Gascoyne, M. (2003) Deep Fluids in the Continents: II. Crystalline Rocks. Treatise on Geochemistry, v.5, pp.541-580, Elsevier, Amsterdam. doi: 10.1016/B0-08-043751-6/05086-6
- Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S. and Wilcke, W. (2010) Lithium-air battery: promise and challenges. J. Phys. Chem. Lett., v.1, p.2193-2203, doi:10.1021/jz1005384.
- Godfrey, L.V., Chan, L.H., Alonso, R.N., Lowenstein, T.K., McDonough, W.F., Houston, J., Li, J., Bobst, A. and Jordan, T.E. (2013) The role of climate in the accumulation of lithium-rich brine in the central Andes. Appl. Geochem., v.38, p.92-102, doi:10.1016/j.apgeochem.2013.09.002.
- Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J. and Galiegue, X. (2019) Re-assessing the European lithium resource potential - A review of hard-rock resources and metallogeny. Ore. Geol. Rev., v.109, p.494-519, doi:10.1016/j.oregeorev.2019.04.015.
- Griffioen, J., Passier, H.F. and Klein, J. (2008) Comparison of selection methods to deduce natural background levels for groundwater units. Environ. Sci. Technol., v.42, p.4863-4869, doi:10.1021/es7032586.
- Haase, C., Dethlefsen, F., Ebert, M. and Dahmke, A. (2013) Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases. Appl. Geochem., v.33, p.306-317, doi:10.1016/j.apgeochem.2013.03.001.
- Hem, J.D. (1985) Study and interpretation of the chemical characteristics of natural water. US Geol. Surv. Water Supply Paper, v.2254, 264p. doi: 10.3133/wsp2254
- HofstrA, A.H., Todorov, I., MerCer, C.N., Adams, D.T. and Marsh, E.E. (2013) Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines. Econ. Geol., v.108, p.1691-1701. doi: 10.2113/econgeo.108.7.1691
- Hwang, J. (2002) Geochemistry of groundwater in limestone and granite of Hwanggangri fluorite mineralized area. J. Kor. Earth Sci. Soc., v.23, p.486-493 (in Korean).
- Jancsek, K., Janovszky, P., Galbcs, G. and Tth, T.M. (2023) Granite alteration as the origin of high lithium content of groundwater in southeast Hungary. Appl. Geochem., v.149, 105570, doi:10.1016/J.APGEOCHEM.2023.105570.
- Jeong, C.H., Kim, H.J. and Lee, S.Y. (2005) Hydrochemistry and genesis of CO2-rich springs from Mesozoic granitoids and their adjacent rocks in South Korea. Geochem. J., v.39, p.517-530. doi: 10.2343/GEOCHEMJ.39.517
- Kamineni, D.C., Mccrank, G.F. and Stone, D. (1987) Multiple alteration events in the East Bull Lake anorthosite-gabbro layered complex, NE Ontario, Canada: evidence from fracture mineralogy and 40Ar-39Ar dating. Appl. Geochem., v.2, p.73-80. doi: 10.1016/0883-2927(87)90062-X
- Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P. and Wallington, T.J. (2012) Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev., v.48, p.55-69, doi:10.1016/j.oregeorev.2012.05.006.
- Kharaka, Y.K. and Hanor, J.S. (2003) Deep Fluids in the Continents: I. Sedimentary Basins. In Treatise on Geochemistry, v.5, p.1-48, Elsevier, Amsterdam. doi: 10.1016/B0-08-043751-6/05085-4
- Kim, J.H., Kim, K.H., Thao, N.T., Batsaikhan, B. and Yun, S.T. (2017) Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam. J. Hydrol., v.549, p.703-714, doi:10.1016/j.jhydrol.2017.04.040.
- Kim, K., Jeong, D.H., Kim, Y., Koh, Y.K., Kim, S.H. and Park, E. (2008) The geochemical evolution of very dilute CO2-rich water in Chungcheong Province, Korea: processes and pathways. Geofluids, v.8, p.3-15, doi:10.1111/j.1468-8123.2007.00200.x.
- Kim, K.H., Yun, S.T., Yu, S., Choi, B.Y., Kim, M.J. and Lee, K.J. (2020) Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. J. Hydrol., v.589, 125202, doi:10.1016/j.jhydrol.2020.125202.
- KMA (2023). Accessed at October 27 2023, https://www.weather.go.kr/w/obs-climate/climate/statistics/korea-char.do.
- Koh, Y.K., Choi, B.Y., Yun, S.T., Choi, H.S., Mayer, B. and Ryoo, S.W. (2008) Origin and evolution of two contrasting thermal groundwaters (CO2-rich and alkaline) in the Jungwon area, South Korea: hydrochemical and isotopic evidence. J. Volcanol. Geotherm. Res., v.178, p.777-786, doi:10.1016/j.jvolgeores.2008.09.008
- Lee, D.W. (1999) Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Isl. Arc, v.8, p.218-231, doi.org/10.1046/j.1440-1738.1999.00233.x.
- Lee, G.J., Kim, S.Y. and Koh, S.M. (2013) Potential evaluation of the Uljin lithium deposit. Mineral and Industry (Korea), v.26, p.32-36 (in Korean).
- Lee J.T. (2021) The Status and Use of Hot Springs in Korea. Korea Central Hot Spring Institute (in Korean).
- Li, J., Wang, X., Ruan, C., Sagoe, G. and Li, J. (2022) Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China. J. Hydrol., v.612, 128022, doi:10.1016/j.jhydrol.2022.128022.
- Li, Q., Liu, D., Chen, C., Shao, Z., Wang, H., Liu, J., Zhang, Q. and Gadd, G.M. (2019) Experimental and geochemical simulation of nickel carbonate mineral precipitation by carbonate-laden ureolytic fungal culture supernatants. Environ. Sci. Nano, v.6, p.1866-1875, doi:10.1039/c9en00385a.
- Li, R., Liu, C., Jiao, P. and Wang, J. (2018) The tempo-spatial characteristics and forming mechanism of lithium-rich brines in China. China Geol., v.1, p.72-83, doi:10.31035/cg2018009.
- Lim, J.U., Lee, S.G., Yum, B.W. and Kim, H.C. (1996) Investigation of geothermal resources in Korea (geothermal resources maps). Research Report KR-96(C)-17, Korea Institute of Geology, Mining and Materials, Daejon, Korea (in Korean).
- Lindsey, B.D., Belitz, K., Cravotta, C.A., Toccalino, P.L. and Dubrovsky, N.M. (2021) Lithium in groundwater used for drinking-water supply in the United States. Sci. Total Environ., v.767, 144691, doi:10.1016/j.scitotenv.2020.144691.
- Logan, W.S. and Nicholson, R.V. (1997) Origin of dissolved groundwater sulphate in coastal plain sediments of the Rio de la Plata, Eastern Argentina. Aquat. Geochem., v.3, p.305-328. doi: 10.1023/A:1009680326095
- Marazuela, M.A., Ayora, C., Vazquez-Sune, E., Olivella, S. and Garcia-Gil, A. (2020) Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): A thermohaline flow modelling approach. Sci. Total Environ., v.739, 139959, doi:10.1016/j.scitotenv.2020.139959.
- McBean, E.A. and Rovers, F.A. (1998) Statistical Procedures for Analysis of Environmental Monitoring Data & Risk Assessment. Prentice Hall, Upper Saddle River.
- Mora, A., Mahlknecht, J., Ledesma-Ruiz, R., Sanford, W.E. and Lesser, L.E. (2020) Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities. J. Contam. Hydrol., v.232, 103653, doi:10.1016/j.jconhyd.2020.103653.
- Munk, A., Hynek, S.A., Bradley, D.C., Boutt, D., Labay, K. and Jochens, H. (2016) Lithium Brines: A Global Perspective (Chapter 14), p.339-365, Soc. Econ. Geol., doi:10.5382/Rev.18.14
- Newell, D.L., Crossey, L.J., Karlstrom, K.E., Fischer, T.P. and Hilton, D.R. (2005) Continental-scale links between the mantle and groundwater systems of the western United States: Evidence from travertine springs and regional He isotope data. GSA Today, v.15, p.4-10, doi:10.1130/1052-5173(2005)015<4:cslbtm>2.0.co;2.
- Oh, C., Lee, B., Lee, S., Kim, M., Lee, B. and Choi, S. (2016) The tectonic evolution and important geoheritages in the Jinan and Muju area, Jeollabuk-do. J. Geol. Soc. Korea, v.52, p.709-738 (in Korean), doi:10.14770/jgsk.2016.52.5.709.
- Russak, A., Sivan, O. and Yechieli, Y. (2016) Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers. Chem. Geol., v.441, p.35-46, doi:10.1016/j.chemgeo.2016.08.003.
- Ryang, W.H. (2013) Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. J. Geol. Soc. Korea, v.49, p.31-45 (in Korean). doi: 10.14770/jgsk.2013.49.1.31
- Rye, R.O., Back, W., Hanshaw, B.B., Rightmire, C.T. and Pearson, F.J. (1981) The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas. Geochim. Cosmochim. Acta, v.45, p.1941-1950. doi: 10.1016/0016-7037(81)90024-7
- Sanjuan, B., Gourcerol, B., Millot, R., Rettenmaier, D., Jeandel, E. and Rombaut, A. (2022) Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics, v.101, 102385, doi:10.1016/J.GEOTHERMICS.2022.102385.
- Sanjuan B, Gourcerol B., Rettenmaier D. and Jeandel E. (2020) Geothermal lithium resource assessment in Europe. European Institute of Innovation and Technology (EIT) Raw Materials EuGeLi Project, v.86.
- Santucci, L., Carol, E. and Kruse, E. (2016) Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Ro de la Plata littoral (Argentina). Sci. Total Environ., v.567, p.1640-1648, doi:10.1016/j.scitotenv.2016.06.066.
- Souid, F., Agoubi, B., Telahigue, F., Chahlaoui, A. and Kharroubi, A. (2018) Groundwater salinization and seawater intrusion tracing based on Lithium concentration in the shallow aquifer of Jerba Island, southeastern Tunisia. J. Afr. Earth Sci., v.138, p.233-246, doi:10.1016/j.jafrearsci.2017.11.013.
- Starkey, H.C. (1982) The role of clays in fixing lithium. United States Government Printing Office, Washington. doi: 10.3133/b1278F
- Sterba, J., Krzemien, A., Riesgo Fernandez, P., Escanciano GarciaMiranda, C. and Fidalgo Valverde, G. (2019) Lithium mining: Accelerating the transition to sustainable energy. Resour. Policy, v.62, p.416-426, doi:10.1016/j.resourpol.2019.05.002.
- Sung, K.Y., Yun, S.T., Park, M.E., Koh, Y.K., Choi, B.Y., Hutcheon, I. and Kim, K.H. (2012) Reaction path modeling of hydro-geochemical evolution of groundwater in granitic bedrocks, South Korea. J. Geochem. Explor., v.118, p.90-97, doi: 10.1016/j.gexplo.2012.05.004.
- Tabelin, C.B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S. and Canbulat, I. (2021) Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng., v.163, 106743, doi:10.1016/j.mineng.2020.106743.
- Tadesse, B., Makuei, F., Albijanic, B. and Dyer, L. (2019) The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng., v.131, p.170-184, doi:10.1016/j.mineng.2018.11.023.
- Turekian, K.K. and Wedepohl, K.H. (1961) Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull., v.72, p.175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
- USGS (2020) Mineral Commodity Summaries 2020. Accessed at October 15 2023, https://www.usgs.gov/centers/national-minerals-information-center/lithium-statistics-and-information.
- Yalamanchali, R. (2012) Lithium, an emerging environmental contaminant, is mobile in the soil-plant system. Unpub. Master thesis, Lincoln University, New Zealand.