DOI QR코드

DOI QR Code

Species Identification and Labeling Compliance Monitoring of Commercial Shrimp Products Sold in Online Markets of South Korea

국내 온라인 유통 새우 제품의 종판별 및 표시사항 모니터링 연구

  • Kun Hee Kim (Division of Applied Food System, Major of Food Science and Technology, Seoul Women's University) ;
  • Ji Young Lee (Division of Applied Food System, Major of Food Science and Technology, Seoul Women's University) ;
  • Tae Sun Kang (Division of Applied Food System, Major of Food Science and Technology, Seoul Women's University)
  • 김건희 (서울여자대학교 자연과학대학 식품공학과) ;
  • 이지영 (서울여자대학교 자연과학대학 식품공학과) ;
  • 강태선 (서울여자대학교 자연과학대학 식품공학과)
  • Received : 2023.11.12
  • Accepted : 2023.11.27
  • Published : 2023.12.30

Abstract

This study investigated species identification and labeling compliance of 48 shrimp products sold in the Korean online markets. Species identification was conducted using the standard DNA barcoding method, using the cytochrome c oxidase subunit I gene. The obtained sequences were compared with those deposited in the NCBI GenBank and BOLD Systems databases. Additionally, phylogenetic analysis was performed to further verify the identified shrimp species. Consequently, 16 shrimp species were identified, including Penaeus vannamei, Pandalus borealis, Palaemon gravieri, Leptochela gracilis, Penaeus monodon, Pleoticus muelleri, Metapenaeopsis dalei, Euphausia pacifica, Lebbeus groenlandicus, Trachypenaeus curvirostris, Argis lar, Metanephrops thomsoni, Metapenaeopsis barbata, Alpheus japonicus, Penaeus chinensis, and Mierspenaeopsis hardwickii. The most prevalent species was Penaeus vannamei, found in 45.8% of the analyzed products. A significant mislabeling rate of 72.9% was found; however, upon excluding generic names such as shrimp, the mislabeling rate reduced to 10.4%. The mislabeling rate was higher in highly-processed products (89.3%) compared with that in minimally-processed products (50%). No correlation was found between the country of origin and mislabeling rate. The results of this study provide crucial data for future monitoring of shrimp products and improving the labeling of shrimp species in Korea.

본 연구는 대한민국 온라인 시장에서 판매되는 48개의 새우 제품의 종판별 및 제품 표시 사항 일치 여부를 조사하였다. 사용 원재료의 종 판별을 위해 cytochrome c oxidase subunit I 유전자의 염기서열을 분석하여 NCBI GenBank 및 BOLD system 데이터베이스에 등록된 생물종의 염기서열과 비교하였다. 또한 계통분석을 수행하여 동정된 새우종을 추가로 검증했다. 종판별 결과 총 16종[흰다리새우(Penaeus vannamei, Whiteleg shrimp or Pacific white shrimp), 북쪽분홍새우(Pandalus borealis, Alaskan pink shrimp), 그라비새우(Palaemon gravieri, Chinese ditch prawn), 돗대기새우(Leptochela gracilis, Lesser glass shrimp), 얼룩새우(Penaeus monodon, Giant tiger prawn), 아르헨티나붉은새우(Pleoticus muelleri, Argentine red shrimp), 산모양깔깔새우(Metapenaeopsis dalei, Kishi velvet shrimp), 태평양난바다곤쟁이(Euphausia pacifica, Isada krill), 가시배새우(Lebbeus groenlandicus, Spiny lebbeid), 꽃새우(Trachypenaeus curvirostris, Southern rough shrimp), 진흙새우(Argis lar, Kuro shrimp), 가시발새우(Metanephrops thomsoni, Red-banded lobster), 깔깔새우(Metapenaeopsis barbata, Whiskered velvet shrimp), 긴발딱총새우(Alpheus japonicus, Japanese snapping shrimp), 대하(Penaeus chinensis, Fleshy prawn), 긴뿔민새우(Mierspenaeopsis hardwickii, Spear shrimp)]이 확인되었으며, 흰다리새우(n=22, 45.8%)가 가장 큰 비중을 차지하였다. 일반명 '새우'를 포함하는 35개 제품(72.9%)에서 표시사항과 불일치를 나타내었으며, 일반명(n=30)을 제외할 경우 불일치율은 10.4%로 낮아졌다. 가공 정도별 불일치율은 다중 가공 제품(n=25, 89.3%)이 단순 가공 제품(n=10, 50%)보다 높은 비율을 보였다. 원산지별 분석 결과 특정 국가와 불일치율과의 상관성은 확인할 수 없었다. 본 연구 결과는 향후 새우 제품의 모니터링 수행 및 새우의 국명 표시 개선을 위한 기초자료로 쓰일 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 2023년도 서울여자대학교 교내 연구비(2023-0240)로 수행되었으며, 이에 감사드립니다.

References

  1. Ministry of Oceans and Fisheries, (2023, November 10). Survey on the production and distribution industries of fisheries products in 2021. Retrieved from https://www.mof.go.kr/upload/whitebook/51568/book.pdf
  2. Bianchi, M., Hallstrom, E., Parker, R.W., Mifflin, K., Tyedmers, P., Ziegler, F., Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice. Commun. Earth Env., 3, 188 (2022).
  3. Tacon, A.G., Contribution of fish and seafood to global food and feed supply: an analysis of the FAO food balance sheet for 2019. Rev. Fish Sci. Aquac., 31, 274-283 (2023). https://doi.org/10.1080/23308249.2022.2124364
  4. Kroetz, K., Luque, G.M., Gephart, J.A., Jardine, S.L., Lee, P., Chicojay Moore, K., Cole, C., Steinkruger, A., Donlan, C.J., Consequences of seafood mislabeling for marine populations and fisheries management. PNAS USA., 117, 30318-30323 (2020). https://doi.org/10.1073/pnas.2003741117
  5. Lawrence, S., Elliott, C., Huisman, W., Dean, M., van Ruth, S., The 11 sins of seafood: assessing a decade of food fraud reports in the global supply chain. Compr. Rev. Food Sci. Food Saf., 21, 3746-3769 (2022). https://doi.org/10.1111/1541-4337.12998
  6. Kang, T.S., Monitoring of commercial products sold on sushi buffet restaurants in South Korea using DNA barcode information. J. Food Hyg. Saf., 35, 45-50 (2020). https://doi.org/10.13103/JFHS.2020.35.1.45
  7. Kang, T.S., Identification and authentication of commercial mi-iuy croaker (Miichthys miiuy) products by two PCR-based methods. J. Food Prot., 84, 463-471 (2021). https://doi.org/10.4315/JFP-20-143
  8. Yu, Y.C., Hong, Y., Kim, J.J., Kim, H.S., Kang, T.S., Monitoring of commercial cephalopod products sold on the South Korea market using DNA barcode information. J. Food Hyg. Saf., 34, 502-507 (2019). https://doi.org/10.13103/JFHS.2019.34.5.502
  9. Silva, A.J., Hellberg, R.S., DNA-based techniques for seafood species authentication. Adv. Food Nutr. Res., 95, 207-255 (2021). https://doi.org/10.1016/bs.afnr.2020.09.001
  10. Dayal, J.S., Ponniah, A.G., Khan, H.I., Babu, E.M., Ambasankar, K., Vasagam, K.K., Shrimps-a nutritional perspective. Curr. Sci., 104, 1487-1491 (2013).
  11. Korea Rural Economic Institute, (2023, November 10). 2021 Food balance sheet. Retrieved from https://www.krei.re.kr/krei/researchReportView.do?key=67&pageType=010101&biblioId=532274&pageUnit=10&searchCnd=all&searchKrwd=%EC%8B%9D%ED%92%88%EC%88%98%EA%B8%89&pageIndex=1&engView=
  12. Korea Fisheries Export Information Portal, (2023, November 10). Fish item import species data. Retrieved from https://kfishinfo.co.kr/kor/view.do?no=626#
  13. Food and Agriculture Organization of the United Nations, (2023, November 10). The state of world fisheries and aquaculture. Retrieved from https://www.fao.org/3/cc0461en/cc0461en.pdf
  14. Wilwet, L., Shakila, R.J., Sivaraman, B., Nayak, B.B., Kumar, H. S., Jaiswar, A. K., Jeyasekaran, G., Rapid detection of fraudulence in seven commercial shrimp products by species-specific PCR assays. Food Control, 124, 107871 (2021).
  15. Helgoe, J., Oswald, K.J., Quattro, J.M., A comprehensive analysis of the mislabeling of Atlantic cod (Gadus morhua) products in Spain. Fish. Res., 222, 105400 (2020).
  16. Korzik, M.L., Austin, H.M., Cooper, B., Jasperse, C., Tan, G., Richards, E., Spencer, E.T., Steinwand, B., Fodrie, F.J., Bruno, J.F., Marketplace shrimp mislabeling in North Carolina. PloS one, 15, e0229512 (2020).
  17. Hellberg, R.S., Pollack, S.J., Hanner, R.H., 2016. Seafood species identification using DNA sequencing. Seafood authenticity and traceability. 1st ed., Cambridge, MA, USA, pp. 113-132.
  18. Zagon, J., Schmidt, J., Schmidt, A.S., Broll, H., Lampen, A., Seidler, T., Braeuning, A., A novel screening approach based on six real-time PCR systems for the detection of crustacean species in food. Food Control, 79, 27-34 (2017). https://doi.org/10.1016/j.foodcont.2017.03.019
  19. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3, 294-299 (1994).
  20. Labelfish Consortium, (2023, November 10). Standard operating procedure for the genetic identification of fish species using DNA barcoding (mitochondrial cytochrome-c-oxidase I sequencing). Retrieved from https://www.seatraces.eu/wp-content/uploads/2019/04/SOP.pdf
  21. Ministry of Food and Drug Safety, (2023, November 10). Food code, No. 2023-56. Retrieved from https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC
  22. Aoki, H., Ahsan, M.N., Matsuo, K., Hagiwara, T., Watabe, S., Purification and characterization of collagenolytic proteases from the hepatopancreas of northern shrimp (Pandalus eous). J. Agric. Food Chem., 51, 777-783 (2003). https://doi.org/10.1021/jf020673w
  23. Nicol, S., Endo, Y., 1997. Krill fisheries of the world. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 17-29.
  24. Holthuis, L.B., 1980. FAO species catalogue. Vol. 1. Shrimps and prawns of the world: An annotated catalogue of species of interest to fisheries. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 31-138.
  25. Kim, K.H., Kang, T.S., A systematic approach for pufferfish identification at the species level using DNA-based methods. Food Control, 147, 109574 (2023).
  26. Roungchun, J.B., Tabb, A.M., & Hellberg, R.S., Identification of tuna species in raw and processed products using DNA mini-barcoding of the mitochondrial control region. Food Control, 134, 108752 (2022).
  27. Kang, T.S., Rapid and simple identification of two closely-related snow crabs (Chionoecetes opilio and C. japonicus) by direct triplex PCR. LWT-Food Sci. Technol., 99, 562-567 (2019). https://doi.org/10.1016/j.lwt.2018.09.078