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Objective: The objective of this study was to perform genome (genome wide association 
studies [GWAS]) and chromosome (CWAS) wide association analyses to identify single 
nucleotide polymorphisms (SNPs) associated with growth traits in registered Simmental 
and Simbrah cattle.
Methods: The phenotypes were deregressed BLUP EBVs for birth weight, weaning weight 
direct, weaning weight maternal, and yearling weight. The genotyping was performed with 
the GGP Bovine 150k chip. After the quality control analysis, 105,129 autosomal SNP from 
967 animals (473 Simmental and 494 Simbrah) were used to carry out genotype association 
tests. The two association analyses were performed per breed and using combined information 
of the two breeds. The SNP associated with growth traits were mapped to their corresponding 
genes at 100 kb on either side. 
Results: A difference in magnitude of posterior probabilities was found across breeds 
between genome and chromosome wide association analyses. A total of 110, 143, and 302 
SNP were associated with GWAS and CWAS for growth traits in the Simmental-, Simbrah- 
and joint -data analyses, respectively. It stands out from the enrichment analysis of the 
pathways for RNA polymerase (POLR2G, POLR3E) and GABAergic synapse (GABRR1, 
GABRR3) for Simmental cattle and p53 signaling pathway (BID, SERPINB5) for Simbrah 
cattle.
Conclusion: Only 6,265% of the markers associated with growth traits were found using 
CWAS and GWAS. The associated markers using the CWAS analysis, which were not 
associated using the GWAS, represents information that due to the model and priors was 
not associated with the traits.
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INTRODUCTION 

Simmental and Simbrah cattle are some of the most widespread breeds for meat produc-
tion in Mexico. Growth traits are traditionally included as selection criteria in beef cattle 
breeding programs, due to their association with meat production and therefore are of 
great economic importance for both breeders and industry [1]. The most common type 
of growth trait used in the selection process is the body weight measurement, which can 
be taken at birth and throughout an animal’s life [2]. Growth traits usually present herita-
bility and genetic correlations from moderate to strong [3,4]. Genetic associations are 
caused by linkage disequilibrium (LD) and pleiotropic effects of genes [5]. The LD is im-
portant for experimental designs to increase genome wide association studies (GWAS) 
efficiency in studied populations. Linkage disequilibrium patterns and scale within and 
between populations/breeds can be influenced by several factors, such as marker allele 
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frequencies, selection history, population structure, effective 
population size, marker type and density, and LD measure 
used [6]. Additionally, inter-chromosome epistasis effects 
are expected to be unaffected by LD between the two single 
nucleotide polymorphisms (SNPs) of each SNP pair but some 
effects still could have contributions from LD between an 
SNP adjacent to another SNP that had a significant inter-
chromosome epistasis effect [7]. The aim of this research 
was to implement GWAS and chromosome-wide association 
(CWAS) analyses to identify SNPs associated with growth 
traits in registered Simmental and Simbrah cattle.

MATERIALS AND METHODS 

The genotype and phenotype of 1,130 animals (547 Sim-
mental and 583 Simbrah), provided by the Mexican Simmental-
Simbrah Breeders Association, were used. The phenotypes 
were deregressed BLUP EBV [8] for birth weight (BW), wean-
ing weight direct (WWD), weaning weight maternal (WWM), 
and yearling weight (YW).
 Blood samples were taken from all the animals in the study. 
Samples were individually identified and sent to Neogen’s 
GeneSeek Laboratory (Lincoln, NE, USA) for DNA extrac-
tion and genotyping using the GGP Bovine 150k chip with 
138,962 SNP.
 All SNP with a call rate <0.95 and a minor allele frequen-
cy <0.05 were excluded. Individuals with a call rate less than 
0.95 were also deleted. After the quality control analysis, 
105,129 autosomal SNP from 967 animals (473 Simmental 
and 494 Simbrah) were used to carry out genotype associa-
tion tests. Additionally, chromosome marker databases were 
performed to calculate their effect on the different traits in-
dividually. Intra-chromosomal LD were evaluated by means 
of pair-wise coefficients of determination (r2) in Plink 1.9. 
Marker pairs were grouped based on their pairwise physical 
distance into bins of 1 kb, starting from 0 to 5,000 kb. The 
average r2 for SNP pairs in each bin was estimated as the 
arithmetic mean of all r2.
 A comparison was made between the GWAS and CWAS 
analyses using a Bayes B model through the BGLR statistical 
package of the R program. These association analyses were 
carried out separately for the two breeds and combining the 
information of both breeds (joint analysis). 
 For a continuous response (yi; i = 1, ..., n) the data equa-
tion is represented as yi = ηi + εi, where ηi is a linear predictor 
(the expected value of yi given predictors) and εi are the re-
siduals, independent and normally distributed with mean 
zero and variance 
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for significance. The pathway analyses were carried out using 
the official symbols of genes and the Bos taurus species as 
reference. 

RESULTS 

The intra-chromosomal LD (r2) tended to decrease with in-
creasing genomic distance in both breeds and joint data. 
Simmental showed higher LD than Simbrah in the nearest 
distances (<100 kb). For larger distances between SNP (>150 
kb), Simbrah showed slightly higher average r2 than Sim-
mental. For adjacent markers (<1 kb), average r2 were 0.515, 
0.587, and 0.469 for joint-, Simmental- and Simbrah-data 
analyses, respectively (Figure 1). 
 There were differences also in the average r2 at a particular 
marker distance depending on the chromosome. Average r2 
ranged from 0.019 (BTA26) to 0.057 (BTA14) in the joint 
analysis, from 0.018 (BTA28) to 0.040 (BTA6) in the Simmen-
tal-data analysis, and from 0.023 (BTA26) to 0.068 (BTA14) 
in the Simbrah-data analysis.
 Gelman-Rubin’s shrink factors of all the models converged 
to 1 as the number of iterations increased, which indicates 
that five chains converged to each other. To select those 
markers associated with a trait, posterior probabilities were 
used. Even though the order of the most associated markers 
was similar in both GWAS and CWAS, there was a clear dif-
ference between the posterior probabilities obtained with both 
analyses, e.g., in Simmental, the marker BovineHD1300014404 
was associated with YW using both CWAS and GWAS; the 
difference between posterior probabilities was 0.6805 (Table 

1). In almost all cases, when a marker was associated with a 
trait using GWAS, it was also associated with the same trait 
using CWAS. In contrast, other markers were associated at 
chromosome-wide level, but were not associated with a trait 
at genome-wide level.
 In both, GWAS and CWAS, SNP were found to be asso-
ciated with growth traits in the Simmental population 
(Supplementary Table S1). A total of 23 (16 for GWAS and 
7 for CWAS), 22 (11 for GWAS and 11 for CWAS), 28 (21 
for GWAS and 7 for CWAS), and 37 (20 for GWAS and 17 
for CWAS) SNP were associated with BW, WWD, WWM, 
and YW, respectively. Additionally, four of the SNP associ-
ated with WWM, and WWD were the same and another 
four SNP shared the same regions (within 100 kb). 
 In the Simbrah population, a total of 61 (27 for GWAS 
and 34 for CWAS), 39 (23 for GWAS and 16 for CWAS), 23 
(13 for GWAS and 10 for CWAS), and 20 (14 for GWAS and 
6 for CWAS) SNP were associated with BW, WWD, WWM, 
and YW, respectively (Supplementary Table S1); 9 of these 
SNPs were the same for WWM and WWD. Another four 
SNP shared the same regions (within 100 kb) for the same 
traits. 
 In the joint analysis, 95 (60 for GWAS and 35 for CWAS), 
76 (52 for GWAS and 24 for CWAS), 60 (41 for GWAS and 
19 for CWAS), and 71 (42 for GWAS and 29 for CWAS) 
SNP were associated with BW, WWD, WWM and YW, re-
spectively (Supplementary Table S1). Also, 19 and 1 of the 
SNPs associated with WWM and YW were the same for 
WWD. Another 3, 1, and 1 SNPs for WWM, BW, and YW 
shared the same regions (within 100 kb) with SNPs associated 
with WWD. Within the SNP windows, QTLs were previously 
associated with other traits, 183, 162, 18, and 302 within the 
regions associated with BW, WWD, WWM and YW, respec-
tively (Supplementary Table S2). In the same way, a total of 
51, 61, 25, and 40 genes were found within these regions 
(Supplementary Table S2).
 In each type of analysis, markers associated with growth 
traits were found in at least 10 chromosomes, however, there 
is no clear difference between which chromosome had more 
associated regions. Displaying all SNP for Simmental, Sim-
brah and joint model, the SNP for WWD matched 34 and 2 
SNP for BW, WWM, and YW, respectively. Also, 3, 2, and 1 
SNP windows for BW matched with the SNPs for WWD, 
WWM, and YW; 5 and 1 SNP windows for WWD matched 
with the SNPs for WWM and YW; finally, 1 SNP window 
matched between WWM and YW. Additionally, 14 and 1 of 
the SNPs associated with WWM and YW were the same for 
WWD. However, these SNP windows are not close enough 
to match three or more traits at the same time. 
 Through the database QTL_ARS_UCD1, 280, 271, 156, 
and 402 QTLs previously described were found within the 
SNP windows for BW, WWD, WWM, and YW, respectively 

Figure 1. Average coefficients of determination (r2) for distance bins 
of 1 kb for Simmental-, Simbrah- and joint- data analyses plotted 
against physical distance (kb) between single nucleotide polymor-
phism.
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(Supplementary Table S2). For all the traits, QTLs associated 
with conformation, health, meat, carcass, milk, and repro-
duction traits in cattle were found. Over the database ARS-
UCD1.2, 131, 102, 64, and 98 genes were found within the 
SNP windows for BW, WWD, WWM, and YW, respectively 
(Supplementary Table S2). Four of these genes were found 
within SNP windows for WWD and YW.
 The posterior probability for gene inclusion is always 
greater than or equal to the probability that any SNP is in-
cluded [11]. For this reason, genes within SNP windows 
were used to search for networks that could be associated 
with growth traits. Functional enrichment analysis was carried 
out to identify genes that are over-represented in a large 
group of genes and may have a connection with the studied 
phenotypes (Table 2). 

DISCUSSION 

The LD estimates at various distances were of the magnitude 

of those reported by Villa-Angulo et al [12] in several dairy 
and beef cattle breeds using less dense SNP panels. The dif-
ference in the decline of the average r2 between Simmental 
and Simbrah could be an effect of the indicine breeds. It has 
been observed that indicine breeds had lower r2 at short dis-
tances and higher r2 at longer distances between markers 
than taurine breeds [13]. Higher LD in taurine breeds has 
been attributed to smaller effective population size and stronger 
genetic bottleneck during breed formation [14].
 Means of r2 were obtained for each chromosome averaged 
across breeds ranging from 0.019 (BTA26) to 0.057 (BTA14) 
in the joint model, from 0.018 (BTA28) to 0.040 (BTA6) in 
Simmental, and from 0.023 (BTA26) to 0.068 (BTA14) in 
Simbrah. In the present study, the higher LD values detected 
in some chromosomes in comparison to others can be in-
dicative of the presence of QTLs affecting traits that have been 
under intense selection in both breeds [6]. A wide variation 
in autosomal recombination rates can lead to a marked di-
versity in the pattern of LD in different genomic regions and 

Table 1. Single nucleotide polymorphisms (SNP) with the highest posterior probabilities (>0.15) associated with growth traits in both genome- 
(GWAS) and chromosome-wide analysis (CWAS)

SNP
BW WWD WWM YW

GWAS CWAS GWAS CWAS GWAS CWAS GWAS CWAS

Joint analysis
BovineHD0400015064 0.155 0.660
BovineHD0700022164 0.269 0.552
BovineHD1100018479 0.448 0.794 0.405 0.907
BovineHD1200007354 0.188 0.226
BovineHD1900010762 0.428 0.964
BovineHD2000005310 0.287 0.914
BovineHD2200002151 0.750 0.860
BovineHD2900012617 0.664 0.338
BTB-00218987 0.251 0.482
BTB-00397480 0.225 0.476

Simbrah analysis
ARS-BFGL-NGS-3343 0.288 0.345
ARS-BFGL-NGS-40907 0.253 0.318 0.152
ARS-BFGL-NGS-75279 0.210 0.476 0.157
BovineHD0100005053 0.259 0.750
BovineHD0200037022 0.272 0.150
BovineHD0300022871 0.368 0.200 0.687
BovineHD0400014726 0.171 0.291 0.236
BovineHD0700030669 0.170 0.694
BovineHD1100018735 0.241 0.903
BovineHD2000005310 0.220 0.503

Simmental analysis
BovineHD1100018476 0.171 0.675
BovineHD1100028536 0.338 0.821
BovineHD1300014404 0.151 0.831
BovineHD2100010794 0.153 0.590
BovineHD2100012099 0.543 0.609
BovineHD2800009062 0.179 0.471

BW, birth weight; WWD, weaning weight direct; WWM, weaning weight maternal; YW, yearling weight.
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chromosomes [15]. The causes may have acted differently at 
specific genomic regions at singular locations among the 
Simmental and Simbrah populations. The different LD pat-
terns across chromosomes have been assumed that exist, 
and therefore, it is also expected different genomic inflation 
factors across chromosomes [16]. 
 The posterior probabilities do not define with clarity the 
extent of association of an SNP with a trait, however, if we 
compare with frequentist models, studies have been carried 
out where it is shown that around half of the published asso-
ciations with p<5×10–7 had posterior probabilities less than 
0.5 [17]. The posterior probabilities are being conditioned 
on the model and the priors, however, while posterior prob-
abilities provide a measure of evidence for hypotheses for 
the marker effects, it is difficult to judge them separately, as 
individual model probabilities may be “diluted” as the num-
ber of markers grows receiving small probability (both prior 
and posterior) [11,18]; this could have been what affected 
the posterior probabilities of the GWAS and CWAS; if this is 
the case, a lot of useful information could be missing. 
 The change in posterior probabilities was probably due to 
the density of the markers used in each of the three analyses, 
with the GWAS giving lower values compared to those of 
the CWAS [19]. However, a study applying a mixed linear 
association model with a leave‐one‐chromosome‐out ap-
proach, suggests that even if the genomic inflation factors do 
not differ a lot between the different SNP densities, genomic 
inflation factors varied largely across the chromosomes [16]. 
An explanation might be that there was a different level of 
association between the SNP on the chromosome and the 
trait of interest, also, because using the total number of SNPs 
can result in too conservative thresholds since it violates the 

assumption of independence between tests [20,21].
 For all growth traits, markers were found in regions previ-
ously associated with QTLs for production, reproduction, 
health, and conformation traits (Supplementary Table S2). 
However, it is of greater interest to focus on the QTLs that 
are correlated with growth traits.
 In the Simmental-data analysis, within the SNP windows, 
QTL were previously associated with other traits; in total, 
there were 69, 30, 135, and 71 QTLs within the regions as-
sociated with BW, WWD, WWM, and YW, respectively 
(Supplementary Table S2). A total of 60, 17, 34, and 50 genes 
were associated with BW, WWD, WWM, and YW, respec-
tively (Supplementary Table S2). For BW, in the associated 
SNP windows, some QTLs were previously reported with 
the length of productive life, body depth, net merit, muscle 
phosphorus and potassium content, shear force, and ten-
derness score in Holstein, Angus, and Nelore. For WWD, 
one SNP window on BTA 10 were reported QTLs associat-
ed with body weight in Charolais and Gelbvieh cattle. In 
the case of WWM, inside the SNP windows QTLs were 
previously associated with average daily gain, body weight 
gain, body depth, rump width, body weight, carcass weight, 
fat thickness, hip height, longissimus muscle area, marbling 
score, metabolic body weight, residual feed intake, withers 
height, and dry matter intake. For YW, it was found in SNP 
windows QTLs previously associated with length of pro-
ductive life, net merit, and dry matter intake in Holstein 
cattle.
 In Simbrah cattle, inside the SNP windows, 28, 79, 3, and 
29 QTL were previously associated with other traits within 
the regions associated with BW, WWD, WWM, and YW, re-
spectively (Supplementary Table S2). Also, a total of 20, 24, 

Table 2. Reactome and KEGG pathways significantly enriched using genes associated with growth traits

Data Trait Category Pathway Count p-value Candidate genes

Joint WWD Reactome Hemostasis-Thrombin signalling through proteinase activated 
receptors

2 0.02 GNA11, GNA15

Hemostasis-Thromboxane signalling through TP receptor 2 0.0096 GNA11, GNA15
Hemostasis-ADP signalling through P2Y purinoceptor 1 2 0.012 GNA11, GNA15
Hemostasis-Platelet homeostasis-Platelet sensitization by LDL 2 0.011 GNA11, GNA15
Metabolism-Fatty Acids bound to GPR40 regulate insulin secre-
tion 

2 0.0096 GNA11, GNA15

Simmental BW KEGG RNA polymerase 2 0.035 POLR2G, POLR3E
Reactome Metabolism of proteins-N-glycan trimming in the endoplasmic 

reticulum and Calnexin/ Calreticulin cycle 
2 0.017 UBXN1, GANAB

WWD KEGG Nicotine addiction 2 0.022 GABRR1, GABRR2
GABAergic synapse 2 0.045 GABRR1, GABRR2
Morphine addiction 2 0.048 GABRR1, GABRR2

Simbrah BW KEGG p53 signaling pathway 2 0.046 BID,  SERPINB5

KEGG, Kyoto encyclopedia of genes and genomes; GNA11,G protein subunit alpha 11; GNA15, G protein subunit alpha 15; WWD, weaning weight direct; BW, 
birth weight; POLR2G, RNA polymerase II subunit G; POLR3E, RNA polymerase III subunit E; UBXN1, UBX domain protein 1; GANAB, glucosidase II alpha 
subunit; GABRR1, gamma-aminobutyric acid type A receptor subunit rho1; GABRR2, gamma-aminobutyric acid type A receptor subunit rho2; BID, BH3 inter-
acting domain death agonist; SERPINB5, serpin family B member 5.
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5, and 8 genes were found within these regions (Supplemen-
tary Table S2). Within regions associated with BW QTLs 
were previously found for maturity rate in Brahman cattle 
and net merit and length of productive life in Holstein cattle. 
For WWD, in the SNP windows QTLs were previously as-
sociated with body weight (birth) in Brangus cattle, weaning 
weight in Blanco Orejinegro cattle and lean meat yield in 
Holstein cattle. For WWM, on BTA 24, QTL previously as-
sociated with bodyweight and maturity rate were found. For 
YW, in a SNP window of BTA 14 a QTL previously associat-
ed with birth weight in Charolais and Chianina cattle and 
carcass weight in Hanwoo cattle was found.
 From the results of the joint model, several coincidences 
were found within the regions associated with BW, WWD, 
and YW, with the databases of QTLs. For BW, in the associ-
ated SNP windows, some QTLs previously reported with 
maturity rate in Brahman cattle, body weight (birth) in Cha-
rolais and Chianina cattle, yearling weight in Charolais and 
Gelbvieh cattle, subcutaneous fat in Hanwoo cattle, body 
depth, lean meat yield, length of productive life, net merit, 
PTA type and rump width in Holstein cattle, and dry matter 
intake and metabolic weight in beef cattle. In the case of WWD 
inside the SNP windows, QTLs were previously associated 
with average daily feed intake, carcass weight, fat thickness, 
marbling score, residual feed intake, and, average daily gain 
in beef cattle, body weight (yearling) in Charolais, and Chianina 
cattle, maturity rate in Braham cattle, tenderness score in 
Angus cattle and, lean meat yield, growth index, average daily 
gain, length of productive life and net merit in Holstein cattle. 
For WWM, inside the SNP, windows were reported QTLs 
associated with muscle sodium content in Angus cattle, ma-
turity rate in Brahman cattle, and dry matter intake in Holstein 
cattle. For YW it was found in SNP windows QTLs previ-
ously associated with marbling score, muscle creatine content, 
tenderness score in Angus cattle, bodyweight in Charolais, 
Chianina, and Gelbvieh cattle, carcass weight in Wagyu cattle, 
dry matter intake, dressed carcass, and body mass in a beef 
cattle population, and body depth, lean meat yield, length of 
productive life, net merit and rump width and lactation per-
sistency in Holstein cattle.
 The joint analysis of two breeds increases the statistical 
power to detect more significant SNPs rather than a single 
analysis. Also, the Simmental and Simbrah analyses give dif-
ferent significant genes. These differences can be associated 
with the genomic architecture changes with hybridization 
and subsequent inter-se mating during the formation of a 
composite breed, this means that alleles at some loci increase 
in frequency more than others in the newly hybridized pop-
ulation [22]. Additionally, differences were found between 
the enrichment analyzes, mainly because no similar genes 
were found between the different association analyses. Fur-
thermore, the more diverse the number of genes, the greater 

the number of pathways that were found.
 In the joint analysis, inside the SNP windows, there are 
some genes relevant to growth traits (Supplementary Table 
S2). Among these stand out special AT-rich sequence-bind-
ing protein-1 (SATB1), prominin mouse-like 1 (PROM1), 
CUB and Sushi multiple domains 1 (CSMD1), phosphati-
dylserine synthase 1 (PTDSS1), and ubiquinol-cytochrome c 
reductase binding protein (UQCRB) (candidate genes for 
BW).
 SATB1 has been associated with the concentration of 
triiodothyronine, a hormone linked with physiological 
processes, including growth and development [23]. Also, 
SATB1 has shown differences in its expression in fetal adi-
pose tissues, depending on the maternal diet [24]. PROM1 
has been selected as a candidate gene for BW in goats, this 
is a protein-coding gene, which plays a role in cell differen-
tiation, proliferation, and apoptosis [25]. In Hanwoo cattle, 
CSMD1 was more highly expressed in muscle samples from 
animals with increasing carcass weight in intramuscular fat 
and eye muscle area [26]. Additionally, PTDSS1 and UQCRB 
tend to be expressed more highly in muscle with increas-
ing intramuscular fat content [26].
 Reactome pathways for WWD in the joint analysis in-
cluded the metabolism through the regulation of insulin 
secretion by fatty acids bound to G protein-coupled receptor 
40 (GPR40) fatty acids augment the glucose-triggered secretion 
of insulin through two mechanisms: intracellular metabolism 
and activation of free fatty acid receptor 1 (FFAR1).
 Also, in the Simmental-data analysis, for BW, a reactome 
pathway associated with the metabolism of proteins-N-gly-
can trimming in the endoplasmic reticulum and Calnexin/
Calreticulin cycle was identified; in this process, the N-gly-
can is progressively trimmed off by the three glucoses and 
some of the mannoses before the protein is transported to 
the cis-Golgi. 
 In Simmental cattle, inside the SNP windows, there are 
some genes relevant to growth traits (Supplementary Table 
S2). Among these stand out SATB1 (candidate gene for 
WWD), proenkephalin (PENK), collagen type IV alpha 1 
chain (COL4A1), short chain dehydrogenase/reductase family 
16C member 6 (SDR16C6), and cell division cycle 5 like 
(CDC5L) (candidate genes for WWM).
 PENK has been associated as a candidate gene for growth 
traits along with RB1 inducible coiled-coil 1 (RB1CC1), neu-
ropeptides B and W receptor 1 (NPBWR1), and pleiomorphic 
adenoma gene 1 (PLAG1) in Nellore cattle, according to 
these studies, PLAG1 seems to be the major gene due to its 
role in regulating insulin-like growth factors, and RB1CC1, 
NPBWR1, and PENK are also involved in processes that can 
contribute to determining the uniformity of growth traits, 
like YW [27]. COL4A1 is related to developmental biology, 
protein digestion, and protein absorption have been indicated 
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as a candidate gene for weaning weight and YW [28]. SDR16C6 
has been associated as a candidate gene for weaning weight 
and daily weight gain between birth and weaning in Blanco 
Orejinero cattle [29]. CDC5L has been associated as a candi-
date gene of muscular growth and homeostasis during puberty 
in conjunction with MYC proto-oncogene (MYC), tran-
scription factor 3 (TCF3), RUNX family transcription factor 
2 (RUNX2), activating transcription factor 2 (ATF2), and 
cAMP responsive element binding protein 1 (CREB1) [30].
 The RNA polymerase pathway was associated with Sim-
mental cattle for BW and take part in the transcription in 
the genetic information processing. In a study the RNA poly-
merase pathway was observed downregulated in overfed 
moderate-energy diet (OVE) cows; also, the gene POLR2G 
(polymerase II gene) and other polymerases III genes were 
affected. To lower polymerase II gene expression, OVE cows 
also experienced suppression of the RNA transport pathway. 
RNA transport allows mRNA transcribed in the nucleus to 
be processed and translated later in the cytoplasm [31]. This 
result does not necessarily mean that there was less overall 
transcription. In eukaryotes, there are 3 distinct RNA poly-
merases, these transcription complexes are composed of 
heterogeneous subunits, which can individually affect the 
transcription complex [32]. 
 The GABAergic synapse pathway was associated with 
WWD in Simmental cattle. GABA is a neurotransmitter widely 
distributed in the central nervous system, which is synthe-
sized from glutamate through decarboxylation39 and plays 
an important role in regulating feeding behavior in the hy-
pothalamus. Other studies have found that this pathway was 
significantly associated with live weight in Simmental cattle 
[33]. Additionally, it was suggested that neuronal sensitivity 
to GABA is related to the control of feeding behavior in ru-
minant animals [34].
 An interesting term that has been found in Simmental 
cattle for WWD is nicotine and morphine addiction. Both 
terms are found as significant Kyoto encyclopedia of genes 
and genomes pathways associated with substance dependence 
in humans extrapolated to bovines. Other studies have ob-
served these pathways in their analysis [33,35,36]. However, 
given the origin, all agree that the pathway regulation is am-
biguous and requires further validation.
 In Simbrah cattle, inside the SNP windows, there are some 
genes relevant to growth traits (Supplementary Table S2). 
Among these stand out vacuolar protein sorting 4 homolog 
B (VPS4B) (candidate gene for BW), cadherin 20 (CDH20) 
(candidate gene for WWM), hedgehog acyltransferase (HHAT), 
phosphodiesterase 4B (PDE4B), tripartite motif containing 
63 (TRIM63), high mobility group AT-hook 2 (HMGA2) 
(candidate genes for WWD), and thymocyte selection asso-
ciated high mobility group box (TOX) (candidate gene for 
YW).

 In pigs, VPS4B and CDH20 have been described as a can-
didate gene that composes the underlying genetic architecture 
of porcine growth and fatness traits, this gene is crucial for 
the degradation of membrane receptors, regulation of epi-
dermal growth factor receptors, and insulin receptors [37]. 
 HHAT is a gene previously associated with weaning weight 
in Zebú cattle [38]. PDE4B encodes the phosphodiesterase 
enzyme type 4 that hydrolyses the cyclic adenosine mono-
phosphate, which is related to energy modulation processes 
in the body, and is linked with lipolysis control, regulating 
body composition, also this gene has been associated with 
average daily gain [39]. TRIM63 is part of the ubiquitin-pro-
teasome system in the main proteolytic pathway in muscle, 
and the muscle-specific ligases tripartite motif-containing, 
also there is a supposition that TRIM63 (MuRF-1) may play 
a role in the control of protein degradation and probably 
also contributes to skeletal muscle metabolism [40]. HMGA2 
has been detected for BW in Brangus, the HMGA proteins 
are architectural transcription factors that regulate the tran-
scription of a variety of genes and direct cellular growth, 
proliferation, and differentiation [41], also the regulation of 
insulin like growth factor 2 (IGF2) by HMGA2 has been 
proved to occur directly or through increased expression of 
PLAG1 [42].
 The TOX gene has previously been linked to PLAG1, coiled-
coil-helix-coiled-coil-helix domain containing 7 (CHCHD7), 
short chain dehydrogenase/reductase family 16C member 5 
(SDR16C5), SDR16C6, PENK, family with sequence similarity 
110 member B (FAM110B), cytochrome P450 family 7 sub-
family A member 1 (CYP7A1), and syndecan binding protein 
(SDCBP) as candidate genes for carcass weight in Hanwoo 
cattle. According to them, a denser LD structure was found 
in and around TOX gene rather than a region that surrounds 
PLAG1 gene, this result might be due to a multigene effect in 
which multiple genes in the same QTL region are affecting 
correlated traits in cattle [43].
 In Simbrah, the p53 signaling pathway was significantly 
associated with BW. This pathway is induced by several 
stress signals (DNA damage, oxidative stress, and activated 
oncogenes). The p53 protein is employed as a transcriptional 
activator of p53-regulated genes. Also, p53 is a gene that has 
been proposed as a part of a network that influences puber-
ty, making supports the relevance of tumor-related genes for 
puberty [44]. There is evidence of the correlation of pubertal 
traits (standardized age at first oestrus and scrotal circum-
ference) with growth characteristics, such as YW and the 
maternal component of weaning weight and BW [45].

CONCLUSION

Only 6,265% of the markers associated with growth traits 
were found using CWAS and GWAS. The associated markers 
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found just in the CWAS could be used for the identification 
of candidate genes. No significantly associated regions were 
found between breeds. Although Simbrah is a synthetic 
breed derived from Simmental, no common regions were 
found, however, in the joint analysis, some common regions 
were found.
 These regions may be useful in providing insight into 
growth traits in Simmental and Simbrah cattle with related 
phenotypic measurements. Also, candidate genes helped 
identify gene pathways through enrichment analysis. These 
pathways can help us understand how they are connected to 
growth traits.
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